English

Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall - Edgeworth’s Price index numbers. - Mathematics and Statistics

Advertisements
Advertisements

Question

Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall - Edgeworth’s Price index numbers.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 9 20 8
II 20 5 30 4
III 30 7 50 5
IV 40 8 60 6
Sum

Solution

Commodity Base Year Current Year p0q0 p1q0 p0q1 p1q1
p0 q0 p1 q1
I 10 9 20 8 90 180 80 160
II 20 5 30 4 100 150 80 120
III 30 7 50 5 210 350 150 250
IV 40 8 60 6 320 480 240 360
Total - - - - 720 1160 550 890

From the table,

`sum "p"_0"q"_0 = 720, sum "p"_1"q"_0 = 1160`

`sum "p"_0"q"_1 = 550, sum "p"_1"q"_1 = 890`

(i) Laspeyre’s Price Index Number:

`"P"_01 ("L") = (sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100`

`= 1160/720 xx 100`

= 161.11

(ii) Paasche’s Price Index Number:

`"P"_01 ("P") = (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`

`= 890/550 xx 100`

= 161.82

(iii) Dorbish-Bowley’s Price Index Number:

`"P"_01 ("D - B") = ("P"_01 ("L") + "P"_01 ("P"))/2`

`= (161.11  +  161.82)/2`

= 161.46

(iv) Marshall-Edgeworth’s Price Index Number:

`"P"_01 ("M- E") = (sum "p"_1"q"_0  +  sum "p"_1"q"_1)/(sum "p"_0"q"_0  +  sum "p"_0"q"_1) xx 100`

`= (1160 + 890)/(720 + 550) xx 100`

= 161.42

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  Is there an error in this question or solution?
Chapter 5: Index Numbers - Exercise 5.2 [Page 82]

RELATED QUESTIONS

Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and MarshallEdgeworth’s Price index numbers.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 8 20 11 15
B 7 10 12 10
C 3 30 5 25
D 2 50 4 35

If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers.


Choose the correct alternative :

Walsh’s Price Index Number is given by


Laspeyre’s Price Index Number is given by _______.


Fill in the blank :

Paasche’s Price Index Number is given by _______.


Fill in the blank :

Dorbish-Bowley’s Price Index Number is given by _______.


`(sump_1q_0)/(sump_0q_0) xx 100` is Paasche’s Price Index Number.


State whether the following is True or False :

`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.


`(sum"p"_0sqrt("q"_0"q"_1))/(sum"p"_1sqrt("q"_0"q"_1)) xx 100` is Walsh’s Price Index Number.


State whether the following is True or False :

`sqrt(("p"_1"q"_0)/(sum"p"_0"q"_0)) xx sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100` is Fisher’s Price Index Number.


Solve the following problem :

Calculate Dorbish-Bowley’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 11 28
II 9 25 12 22
III 10 15 13 11

If Laspeyre’s and Dorbish’s Price Index Numbers are 150.2 and 152.8 respectively, find Paasche’s Price Index Number.


Solve the following problem :

If `sum"p_"0"q"_0 = 120, sum "p"_0"q"_1 = 160, sum "p"_1"q"_1 = 140, and sum "p"_1"q"+0` = 200, find Laspeyre’s, Paasche’s Dorbish-Bowley’s and Marshall Edgeworth’s Price Index Number.


Choose the correct alternative:

Price Index Number by using Weighted Aggregate Method is given by


State whether the following statement is True or False:

Walsh’s Price Index Number is given by `(sum"p"_1sqrt("q"_0"q"_1))/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`


If P01(L) = 40 and P01(P) = 90, find P01(D-B) and P01(F).


Given P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320, Find P01(L)


Laspeyre’s Price Index Number uses current year’s quantities as weights.


Complete the following activity to calculate, Laspeyre's and Paasche's Price Index Number for the following data :

Commodity Base Year Current Year
Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solution:

Commodity Base Year Current Year p1q0 p0q0 p1q1 p0q1
  p0 q0 p1 q1
I 8 30 12 25 360 240 300 200
II 10 42 20 16 840 420 320 160
Total         `bb(sump_1q_0=1200)` `bb(sump_0q_0=660)` `bb(sump_1q_1=620)` `bb(sump_0q_1=360)`

Laspeyre's Price Index Number:

P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100 = square/660xx100`

∴ P01(L) = `square`

Paasche 's Price Index Number:

P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100=(620)/(square) xx 100`

∴ P01(P) = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×