Advertisements
Advertisements
Question
Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall - Edgeworth’s Price index numbers.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 9 | 20 | 8 |
II | 20 | 5 | 30 | 4 |
III | 30 | 7 | 50 | 5 |
IV | 40 | 8 | 60 | 6 |
Solution
Commodity | Base Year | Current Year | p0q0 | p1q0 | p0q1 | p1q1 | ||
p0 | q0 | p1 | q1 | |||||
I | 10 | 9 | 20 | 8 | 90 | 180 | 80 | 160 |
II | 20 | 5 | 30 | 4 | 100 | 150 | 80 | 120 |
III | 30 | 7 | 50 | 5 | 210 | 350 | 150 | 250 |
IV | 40 | 8 | 60 | 6 | 320 | 480 | 240 | 360 |
Total | - | - | - | - | 720 | 1160 | 550 | 890 |
From the table,
`sum "p"_0"q"_0 = 720, sum "p"_1"q"_0 = 1160`
`sum "p"_0"q"_1 = 550, sum "p"_1"q"_1 = 890`
(i) Laspeyre’s Price Index Number:
`"P"_01 ("L") = (sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100`
`= 1160/720 xx 100`
= 161.11
(ii) Paasche’s Price Index Number:
`"P"_01 ("P") = (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`
`= 890/550 xx 100`
= 161.82
(iii) Dorbish-Bowley’s Price Index Number:
`"P"_01 ("D - B") = ("P"_01 ("L") + "P"_01 ("P"))/2`
`= (161.11 + 161.82)/2`
= 161.46
(iv) Marshall-Edgeworth’s Price Index Number:
`"P"_01 ("M- E") = (sum "p"_1"q"_0 + sum "p"_1"q"_1)/(sum "p"_0"q"_0 + sum "p"_0"q"_1) xx 100`
`= (1160 + 890)/(720 + 550) xx 100`
= 161.42
APPEARS IN
RELATED QUESTIONS
Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and MarshallEdgeworth’s Price index numbers.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 8 | 20 | 11 | 15 |
B | 7 | 10 | 12 | 10 |
C | 3 | 30 | 5 | 25 |
D | 2 | 50 | 4 | 35 |
If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers.
Choose the correct alternative :
Walsh’s Price Index Number is given by
Laspeyre’s Price Index Number is given by _______.
Fill in the blank :
Paasche’s Price Index Number is given by _______.
Fill in the blank :
Dorbish-Bowley’s Price Index Number is given by _______.
`(sump_1q_0)/(sump_0q_0) xx 100` is Paasche’s Price Index Number.
State whether the following is True or False :
`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.
`(sum"p"_0sqrt("q"_0"q"_1))/(sum"p"_1sqrt("q"_0"q"_1)) xx 100` is Walsh’s Price Index Number.
State whether the following is True or False :
`sqrt(("p"_1"q"_0)/(sum"p"_0"q"_0)) xx sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100` is Fisher’s Price Index Number.
Solve the following problem :
Calculate Dorbish-Bowley’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 11 | 28 |
II | 9 | 25 | 12 | 22 |
III | 10 | 15 | 13 | 11 |
If Laspeyre’s and Dorbish’s Price Index Numbers are 150.2 and 152.8 respectively, find Paasche’s Price Index Number.
Solve the following problem :
If `sum"p_"0"q"_0 = 120, sum "p"_0"q"_1 = 160, sum "p"_1"q"_1 = 140, and sum "p"_1"q"+0` = 200, find Laspeyre’s, Paasche’s Dorbish-Bowley’s and Marshall Edgeworth’s Price Index Number.
Choose the correct alternative:
Price Index Number by using Weighted Aggregate Method is given by
State whether the following statement is True or False:
Walsh’s Price Index Number is given by `(sum"p"_1sqrt("q"_0"q"_1))/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`
If P01(L) = 40 and P01(P) = 90, find P01(D-B) and P01(F).
Given P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320, Find P01(L)
Laspeyre’s Price Index Number uses current year’s quantities as weights.
Complete the following activity to calculate, Laspeyre's and Paasche's Price Index Number for the following data :
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
Solution:
Commodity | Base Year | Current Year | p1q0 | p0q0 | p1q1 | p0q1 | ||
p0 | q0 | p1 | q1 | |||||
I | 8 | 30 | 12 | 25 | 360 | 240 | 300 | 200 |
II | 10 | 42 | 20 | 16 | 840 | 420 | 320 | 160 |
Total | `bb(sump_1q_0=1200)` | `bb(sump_0q_0=660)` | `bb(sump_1q_1=620)` | `bb(sump_0q_1=360)` |
Laspeyre's Price Index Number:
P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100 = square/660xx100`
∴ P01(L) = `square`
Paasche 's Price Index Number:
P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100=(620)/(square) xx 100`
∴ P01(P) = `square`