English

If P01(L) = 40 and P01(P) = 90, find P01(D-B) and P01(F). - Mathematics and Statistics

Advertisements
Advertisements

Question

If P01(L) = 40 and P01(P) = 90, find P01(D-B) and P01(F).

Sum

Solution

Given, P01(L) = 40 and P01(P) = 90

Dorbish-Bowley’s Price Index Number

P01(D-B) = `("P"_01("L") + "P"_01("P"))/2`

= `(40 + 90)/2`

= `130/2`

= 65

Fisher’s Price Index Number

P01(F) = `sqrt("P"_01("L") xx "P"_01("P"))`

= `sqrt(40 xx 90)`

= `sqrt(3600)`

= 60`

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  Is there an error in this question or solution?
Chapter 2.5: Index Numbers - Q.4

RELATED QUESTIONS

Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and MarshallEdgeworth’s Price index numbers.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 8 20 11 15
B 7 10 12 10
C 3 30 5 25
D 2 50 4 35

If P01(L) = 90 and P01(P) = 40, find P01(D – B) and P01(F).


If ∑ p0q0 = 140, ∑ p0q1 = 200, ∑ p1q0 = 350, ∑ p1q1 = 460, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.


Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.


If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers.


Choose the correct alternative :

The price Index Number by Weighted Aggregate Method is given by ______.


`(sump_1q_0)/(sump_0q_0) xx 100` is Paasche’s Price Index Number.


State whether the following is True or False :

`(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx (sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is Dorbish-Bowley’s Price Index Number.


State whether the following is True or False :

`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.


`(sum"p"_0sqrt("q"_0"q"_1))/(sum"p"_1sqrt("q"_0"q"_1)) xx 100` is Walsh’s Price Index Number.


Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base year Current year
  Price
p0
Quantity
q0
price
p1
Quantity
q1
A 20 18 30 15
B 25 8 28 5
C 32 5 40 7
D 12 10 18 10

Solve the following problem:

If find x is Walsh’s Price Index Number is 150 for the following data

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 5 3 10 3
B x 4 16 9
C 15 5 23 5
D 10 2 26 8

Solve the following problem :

If `sum"p_"0"q"_0 = 120, sum "p"_0"q"_1 = 160, sum "p"_1"q"_1 = 140, and sum "p"_1"q"+0` = 200, find Laspeyre’s, Paasche’s Dorbish-Bowley’s and Marshall Edgeworth’s Price Index Number.


If Laspeyre’s and Paasche’s Price Index Numbers are 50 and 72 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Numbers


Find the missing price if Laspeyre’s and Paasche’s Price Index Numbers are equal for following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 1 10 2 5
B 1 12

State whether the following statement is true or false:

Dorbish-Bowley's Price Index Number is the square root of the product of Laspeyre's and Paasche's Index Numbers.


Laspeyre’s Price Index Number uses current year’s quantities as weights.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×