Advertisements
Advertisements
Question
Calculate Walsh’s price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 12 | 40 | 3 |
II | 20 | 2 | 25 | 8 |
III | 30 | 3 | 50 | 27 |
IV | 60 | 9 | 90 | 36 |
Solution
Construct the following table:
Commodity | Base Year |
Current Year |
`sqrt("q"_1"q"_1)` | `"p"_0sqrt("q"_0"q"_1)` | `"p"_1 sqrt("q"_0"q"_1)` | ||
p0 | q0 | p1 | q1 | ||||
I | 10 | 12 | 40 | 3 | 6 | 60 | 240 |
II | 20 | 2 | 25 | 8 | 4 | 80 | 100 |
III | 30 | 3 | 50 | 27 | 9 | 270 | 450 |
IV | 60 | 9 | 90 | 36 | 18 | 1080 | 1620 |
Total | – | – | – | – | – | 1490 | 2410 |
From the table, `sum"p"_0 sqrt("q"_0"q"_1)` = 1490, `sum"p"_1sqrt("q"_0"q"_1)` = 2410
Walsh’s Price Index Number:
P01(W) = `(sum"p"_1sqrt("q"_0"q"_1))/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`
= `2410/1490 xx 100`
= 161.74
APPEARS IN
RELATED QUESTIONS
Find x in the following table if Laspeyre’s and Paasche’s Price Index Numbers are equal.
Commodity | Base Year | Current year | ||
Price | Quantity | Price | Quantity | |
A | 2 | 10 | 2 | 5 |
B | 2 | 5 | x | 2 |
If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers.
Choose the correct alternative :
The price Index Number by Weighted Aggregate Method is given by ______.
Laspeyre’s Price Index Number is given by ______.
Paasche’s Price Index Number is given by ______
Dorbish-Bowley’s Price Index Number is given by ______.
Fill in the blank :
Paasche’s Price Index Number is given by _______.
State whether the following is True or False :
`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.
`(sum"p"_0("q"_0 + "q"_1))/(sum"p"_1("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth’s Price Index Number.
State whether the following is True or False :
`sqrt(("p"_1"q"_0)/(sum"p"_0"q"_0)) xx sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100` is Fisher’s Price Index Number.
Solve the following problem:
If find x is Walsh’s Price Index Number is 150 for the following data
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 5 | 3 | 10 | 3 |
B | x | 4 | 16 | 9 |
C | 15 | 5 | 23 | 5 |
D | 10 | 2 | 26 | 8 |
Solve the following problem :
Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.
Solve the following problem :
Given that `sum "p"_1"q"_1 = 300, sum "p"_0"q"_1 = 320, sum "p"_0"q"_0` = 120, and Marshall- Edgeworth’s Price Index Number is 120, find `sum"p"_1"q"_0` and Paasche’s Price Index Number.
Marshall-Edgeworth's Price Index Number is given by ______
The average of Laspeyre’s and Paasche’s Price Index Numbers is called ______ Price Index Number
Calculate Marshall-Edgeworth Price Index Number for following.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 8 | 20 | 11 | 15 |
B | 7 | 10 | 12 | 10 |
C | 3 | 30 | 5 | 25 |
D | 2 | 50 | 4 | 35 |
Given the following table, find Walsh’s Price Index Number by completing the activity.
Commodity | p0 | q0 | p1 | q1 | q0q1 | `sqrt("q"_0"q"_1)` | p0`sqrt("q"_0"q"_1)` | p1`sqrt("q"_0"q"_1)` |
I | 20 | 9 | 30 | 4 | 36 | `square` | `square` | 180 |
II | 10 | 5 | 50 | 5 | `square` | 5 | 50 | `square` |
III | 40 | 8 | 10 | 2 | 16 | `square` | 160 | `square` |
IV | 30 | 4 | 20 | 1 | `square` | 2 | `square` | 40 |
Total | – | – | – | – | 390 | `square` |
Walsh’s price Index Number is
P01(W) = `square/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`
= `510/square xx 100`
= `square`
`sqrt((sump_1q_0)/(sump_0q_0)) xx sqrt((sump_1q_1)/(sump_0q_1)) xx 100`