Advertisements
Advertisements
Question
Dorbish-Bowley’s Price Index Number is given by ______.
Options
`((sum"p"_1"q"_0)/(sum"p"_0"q"_1) + (sum"p"_0"q"_1)/(sum"p"_1"q"_0))/(2) xx 100`
`((sum"p"_1"q"_1)/(sum"p"_0"q"_0) + (sum"p"_0"q"_0)/(sum"p"_1"q"_1))/(2) xx 100`
`((sum"p"_1"q"_0)/(sum"p"_0"q"_0) + (sum"p"_1"q"_1)/(sum"p"_0"q"_1))/(2) xx 100`
`((sum"p"_0"q"_0)/(sum"p"_1"q"_0) + (sum"p"_0"q"_1)/(sum"p"_1"q"_1))/(2) xx 100`
Solution
Dorbish-Bowley’s Price Index Number is given by `bbunderline(((sum"p"_1"q"_0)/(sum"p"_0"q"_0) + (sum"p"_1"q"_1)/(sum"p"_0"q"_1))/(2) xx 100)`.
RELATED QUESTIONS
Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and MarshallEdgeworth’s Price index numbers.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 8 | 20 | 11 | 15 |
B | 7 | 10 | 12 | 10 |
C | 3 | 30 | 5 | 25 |
D | 2 | 50 | 4 | 35 |
Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall - Edgeworth’s Price index numbers.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 9 | 20 | 8 |
II | 20 | 5 | 30 | 4 |
III | 30 | 7 | 50 | 5 |
IV | 40 | 8 | 60 | 6 |
If P01(L) = 90 and P01(P) = 40, find P01(D – B) and P01(F).
If ∑ p0q0 = 140, ∑ p0q1 = 200, ∑ p1q0 = 350, ∑ p1q1 = 460, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.
If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers.
Choose the correct alternative :
Marshall-Edgeworth’s Price Index Number is given by
Laspeyre’s Price Index Number is given by _______.
Fill in the blank :
Marshall-Edgeworth’s Price Index Number is given by _______.
`(sump_1q_0)/(sump_0q_0) xx 100` is Paasche’s Price Index Number.
State whether the following is True or False :
`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.
Solve the following problem :
Calculate Walsh’s Price Index Number for the following data.
Commodity | Base year | Current year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
Solve the following problem :
Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price P0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
Find x if Laspeyre’s Price Index Number is same as Paasche’s Price Index Number for the following data
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 3 | x | 2 | 5 |
B | 4 | 6 | 3 | 5 |
Solve the following problem:
If find x is Walsh’s Price Index Number is 150 for the following data
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 5 | 3 | 10 | 3 |
B | x | 4 | 16 | 9 |
C | 15 | 5 | 23 | 5 |
D | 10 | 2 | 26 | 8 |
Solve the following problem :
Find x if Paasche’s Price Index Number is 140 for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 20 | 8 | 40 | 7 |
B | 50 | 10 | 60 | 10 |
C | 40 | 15 | 60 | x |
D | 12 | 15 | 15 | 15 |
Solve the following problem :
Given that Laspeyre’s and Paasche’s Price Index Numbers are 25 and 16 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Number.
Solve the following problem :
Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.
Choose the correct alternative:
Fisher’s Price Index Number is
Marshall-Edgeworth's Price Index Number is given by ______
Calculate
a) Laspeyre’s
b) Passche’s
c) Dorbish-Bowley’s Price Index Numbers for following data.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 10 | 9 | 50 | 8 |
B | 20 | 5 | 60 | 4 |
C | 30 | 7 | 70 | 3 |
D | 40 | 8 | 80 | 2 |
Calculate Marshall-Edgeworth Price Index Number for following.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 8 | 20 | 11 | 15 |
B | 7 | 10 | 12 | 10 |
C | 3 | 30 | 5 | 25 |
D | 2 | 50 | 4 | 35 |
Calculate Walsh’s price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 12 | 40 | 3 |
II | 20 | 2 | 25 | 8 |
III | 30 | 3 | 50 | 27 |
IV | 60 | 9 | 90 | 36 |
State whether the following statement is true or false:
Dorbish-Bowley's Price Index Number is the square root of the product of Laspeyre's and Paasche's Index Numbers.
If ∑ p0q0 = 120, ∑ p0q1 = 160, ∑ p1q1 = 140, ∑ p1qo = 200, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.
In the following table, Laspeyre's and Paasche's Price Index Numbers are equal. Complete the following activity to find x :
Commodity | Base Year | Current year | ||
Price | Quantity | Price | Quantity | |
A | 2 | 10 | 2 | 5 |
B | 2 | 5 | x | 2 |
Solution: P01(L) = P01(P)
`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = square/(sum "p"_0"q"_1) xx 100`
`(20 + 5x)/square xx 100 = square/14 xx 100`
∴ x = `square`