English

Solve the following problem: If find x is Walsh’s Price Index Number is 150 for the following data - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following problem:

If find x is Walsh’s Price Index Number is 150 for the following data

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 5 3 10 3
B x 4 16 9
C 15 5 23 5
D 10 2 26 8
Sum

Solution

Commodity Base Year Current Year  
p0 q0 p1 q1 q0q1 `bb(sqrt("q"_0"q"_1))` `bb("p"_1sqrt("q"_0"q"_1))` `bb("p"_0sqrt("q"_0"q"_1))`
A 5 3 10 3 9 3 30 15
B x 4 16 9 36 6 96 6x
C 15 5 23 5 25 5 115 75
D 10 2 26 8 16 4 104 40
Total 345 6x + 130

From the table,
`sum"p"_1sqrt("q"_0"q"_1) = 345, sum"p"_0sqrt("q"_0"q"_1) = 6x + 130`

Walsh’s Price Index Number:

P01(W) = `(sum"p"_1sqrt("q"_0"q"_1))/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`

∴ 150 = `(345)/(6x + 130) xx 100`   ...[∵ P01(W) = 150]

∴ 6x + 130 = `(345 xx 100)/(150)`

∴ 6x + 130 = 230
∴ 6x = 230 – 130
∴ 6x = 100
∴ x = `(100)/(6)`
∴ x = 16.67

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  Is there an error in this question or solution?
Chapter 5: Index Numbers - Miscellaneous Exercise 5 [Page 93]

RELATED QUESTIONS

Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall - Edgeworth’s Price index numbers.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 9 20 8
II 20 5 30 4
III 30 7 50 5
IV 40 8 60 6

Calculate Walsh’s Price Index Number.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 12 20 9
II 20 4 25 8
III 30 13 40 27
IV 60 29 75 36

If P01(L) = 90 and P01(P) = 40, find P01(D – B) and P01(F).


If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers.


Choose the correct alternative :

The price Index Number by Weighted Aggregate Method is given by ______.


Laspeyre’s Price Index Number is given by ______.


Paasche’s Price Index Number is given by ______


Choose the correct alternative :

Marshall-Edgeworth’s Price Index Number is given by


Choose the correct alternative :

Walsh’s Price Index Number is given by


Walsh’s Price Index Number is given by _______.


State whether the following is True or False :

`(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx (sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is Dorbish-Bowley’s Price Index Number.


State whether the following is True or False :

`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.


`(sum"p"_0sqrt("q"_0"q"_1))/(sum"p"_1sqrt("q"_0"q"_1)) xx 100` is Walsh’s Price Index Number.


Solve the following problem :

Calculate Dorbish-Bowley’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 11 28
II 9 25 12 22
III 10 15 13 11

Solve the following problem :

Calculate Walsh’s Price Index Number for the following data.

Commodity Base year Current year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Find x if Laspeyre’s Price Index Number is same as Paasche’s Price Index Number for the following data

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 3 x 2 5
B 4 6 3 5

Solve the following problem :

Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.


Choose the correct alternative:

Price Index Number by using Weighted Aggregate Method is given by


Choose the correct alternative:

Dorbish–Bowley’s Price Index Number is


Choose the correct alternative:

Walsh's Price Index Number is given by


Marshall-Edgeworth's Price Index Number is given by ______


Calculate Walsh’s price Index Number for the following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 12 40 3
II 20 2 25 8
III 30 3 50 27
IV 60 9 90 36

If P01(L) = 40 and P01(P) = 90, find P01(D-B) and P01(F).


If ∑ p0q0 = 120, ∑ p0q1 = 160, ∑ p1q1 = 140, ∑ p1qo = 200, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.


Complete the following activity to calculate, Laspeyre's and Paasche's Price Index Number for the following data :

Commodity Base Year Current Year
Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solution:

Commodity Base Year Current Year p1q0 p0q0 p1q1 p0q1
  p0 q0 p1 q1
I 8 30 12 25 360 240 300 200
II 10 42 20 16 840 420 320 160
Total         `bb(sump_1q_0=1200)` `bb(sump_0q_0=660)` `bb(sump_1q_1=620)` `bb(sump_0q_1=360)`

Laspeyre's Price Index Number:

P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100 = square/660xx100`

∴ P01(L) = `square`

Paasche 's Price Index Number:

P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100=(620)/(square) xx 100`

∴ P01(P) = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×