English

If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers. - Mathematics and Statistics

Advertisements
Advertisements

Question

If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers.

Sum

Solution

Let Laspeyre’s Price Index Number P01(L) = x

and Paasche’s Price Index Number P01(P) = y

Dorbish-Bowley’s Price Index Number P01(D-B) = 5

Fisher’s Price Index Number P01(F) = 4

`("P"_01("L")  "P"_01("P"))/(2) = "P"_(01)("D"–"B")`

∴ `(x + y)/(2)` = 5

∴ x + y = 10           ...(i)

`sqrt("P"_01("L") xx "P"_01("P"))= "P"_01("F")`

∴ `sqrt(xy)` = 4

∴ xy = 16

∴ y = `(16)/x`

∴ `x + (16)/x` = 10      ...[From (i)]

∴ x2 + 16 = 10x

∴ x2 – 10x + 16 = 0

∴ x – 8x – 2x + 16 = 0

∴ x(x – 8) – 2(x – 8) = 0

∴ (x – 2) (x – 8)

∴ x = 2 or x = 8

If x = 2, then from equation (i), y = 8

If x = 8, then from equation (i), y = 2

∴ P01(L) = 8 and P01(P) = 2

or P01(P) = 8 and P01(L) = 2

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  Is there an error in this question or solution?
Chapter 5: Index Numbers - Exercise 5.2 [Page 82]

RELATED QUESTIONS

Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall - Edgeworth’s Price index numbers.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 9 20 8
II 20 5 30 4
III 30 7 50 5
IV 40 8 60 6

Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.


Paasche’s Price Index Number is given by ______


Dorbish-Bowley’s Price Index Number is given by ______.


Choose the correct alternative :

Marshall-Edgeworth’s Price Index Number is given by


`(sum"p"_0("q"_0 + "q"_1))/(sum"p"_1("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth’s Price Index Number.


`(sum"p"_0sqrt("q"_0"q"_1))/(sum"p"_1sqrt("q"_0"q"_1)) xx 100` is Walsh’s Price Index Number.


Find x if Laspeyre’s Price Index Number is same as Paasche’s Price Index Number for the following data

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 3 x 2 5
B 4 6 3 5

If Laspeyre’s and Dorbish’s Price Index Numbers are 150.2 and 152.8 respectively, find Paasche’s Price Index Number.


Solve the following problem :

If `sum"p_"0"q"_0 = 120, sum "p"_0"q"_1 = 160, sum "p"_1"q"_1 = 140, and sum "p"_1"q"+0` = 200, find Laspeyre’s, Paasche’s Dorbish-Bowley’s and Marshall Edgeworth’s Price Index Number.


Choose the correct alternative:

Fisher’s Price Index Number is


The average of Laspeyre’s and Paasche’s Price Index Numbers is called ______ Price Index Number


State whether the following statement is True or False:

`(sum"p"_0sqrt("q"_0 + "q"_1))/(sum"p"_1sqrt("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth Price Index Number


State whether the following statement is True or False:

`[sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) + (sumsqrt("q"_0"q"_1))/(sum("p"_0 + "p"_1))] xx 100` is Fisher’s Price Index Number.


Calculate Walsh’s price Index Number for the following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 12 40 3
II 20 2 25 8
III 30 3 50 27
IV 60 9 90 36

Find the missing price if Laspeyre’s and Paasche’s Price Index Numbers are equal for following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 1 10 2 5
B 1 12

Complete the following activity to calculate, Laspeyre's and Paasche's Price Index Number for the following data :

Commodity Base Year Current Year
Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solution:

Commodity Base Year Current Year p1q0 p0q0 p1q1 p0q1
  p0 q0 p1 q1
I 8 30 12 25 360 240 300 200
II 10 42 20 16 840 420 320 160
Total         `bb(sump_1q_0=1200)` `bb(sump_0q_0=660)` `bb(sump_1q_1=620)` `bb(sump_0q_1=360)`

Laspeyre's Price Index Number:

P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100 = square/660xx100`

∴ P01(L) = `square`

Paasche 's Price Index Number:

P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100=(620)/(square) xx 100`

∴ P01(P) = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×