Advertisements
Advertisements
Question
Given the following table, find Walsh’s Price Index Number by completing the activity.
Commodity | p0 | q0 | p1 | q1 | q0q1 | `sqrt("q"_0"q"_1)` | p0`sqrt("q"_0"q"_1)` | p1`sqrt("q"_0"q"_1)` |
I | 20 | 9 | 30 | 4 | 36 | `square` | `square` | 180 |
II | 10 | 5 | 50 | 5 | `square` | 5 | 50 | `square` |
III | 40 | 8 | 10 | 2 | 16 | `square` | 160 | `square` |
IV | 30 | 4 | 20 | 1 | `square` | 2 | `square` | 40 |
Total | – | – | – | – | 390 | `square` |
Walsh’s price Index Number is
P01(W) = `square/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`
= `510/square xx 100`
= `square`
Solution
Commodity | p0 | q0 | p1 | q1 | q0q1 | `sqrt("q"_0"q"_1)` | p0`sqrt("q"_0"q"_1)` | p1`sqrt("q"_0"q"_1)` |
I | 20 | 9 | 30 | 4 | 36 | 6 | 120 | 180 |
II | 10 | 5 | 50 | 5 | 25 | 5 | 50 | 250 |
III | 40 | 8 | 10 | 2 | 16 | 4 | 160 | 40 |
IV | 30 | 4 | 20 | 1 | 4 | 2 | 60 | 40 |
Total | – | – | – | – | 390 | 510 |
Walsh’s price Index Number is
P01(W) = `(sum"p"_1sqrt("q"_0"q"_1))/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`
= `510/390 xx 100`
= 130.77
APPEARS IN
RELATED QUESTIONS
Calculate Walsh’s Price Index Number.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
L | 4 | 16 | 3 | 19 |
M | 6 | 16 | 8 | 14 |
N | 8 | 28 | 7 | 32 |
Calculate Walsh’s Price Index Number.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 12 | 20 | 9 |
II | 20 | 4 | 25 | 8 |
III | 30 | 13 | 40 | 27 |
IV | 60 | 29 | 75 | 36 |
If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers.
If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers.
Dorbish-Bowley’s Price Index Number is given by ______.
Choose the correct alternative :
Marshall-Edgeworth’s Price Index Number is given by
Fill in the blank :
Marshall-Edgeworth’s Price Index Number is given by _______.
`(sump_1q_0)/(sump_0q_0) xx 100` is Paasche’s Price Index Number.
`(sum"p"_0sqrt("q"_0"q"_1))/(sum"p"_1sqrt("q"_0"q"_1)) xx 100` is Walsh’s Price Index Number.
State whether the following is True or False :
`sqrt(("p"_1"q"_0)/(sum"p"_0"q"_0)) xx sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100` is Fisher’s Price Index Number.
Find x if Laspeyre’s Price Index Number is same as Paasche’s Price Index Number for the following data
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 3 | x | 2 | 5 |
B | 4 | 6 | 3 | 5 |
Choose the correct alternative:
Price Index Number by using Weighted Aggregate Method is given by
Choose the correct alternative:
The formula P01 = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is for
Choose the correct alternative:
Walsh's Price Index Number is given by
Fisher's Price Index Number is given by ______.
Given P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320, Find P01(L)
If `sum"p"_0"q"_0` = 150, `sum"p"_0"q"_1` = 250, `sum"p"_1"q"_1` = 375 and P01(L) = 140. Find P01(M-E)
Laspeyre’s Price Index Number uses current year’s quantities as weights.
If ∑ p0q0 = 120, ∑ p0q1 = 160, ∑ p1q1 = 140, ∑ p1qo = 200, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.