Advertisements
Advertisements
प्रश्न
Find x if Laspeyre’s Price Index Number is same as Paasche’s Price Index Number for the following data
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 3 | x | 2 | 5 |
B | 4 | 6 | 3 | 5 |
उत्तर
Commodity | Base Year | Current Year | p0q0 | p0q1 | p1q0 | p1q1 | ||
p0 | q0 | p1 | q1 | |||||
A | 3 | x | 2 | 5 | 3x | 15 | 2x | 10 |
B | 4 | 6 | 3 | 5 | 24 | 20 | 18 | 15 |
Total | – | – | – | – | = 24 + 3x | = 35 | = 18 + 2x | = 25 |
From the table,
`sump_0q_0` = 3x + 24,
`sump_0q_1` = 35
`sump_1q_0` = 2x + 18,
`sump_1q_1` = 25
Laspeyre’s Price Index Number:
P01(L) = `(sump_1q_0)/(sump_0q_0) xx 100`
= `(2x + 18)/(3x + 24) xx 100` ...(i)
Paasche’s Price Index Number:
P01(P) = `(sump_1q_1)/(sump_0q_1) xx 100`
= `(25)/(35) xx 100`
= `(5)/(7) xx 100` ...(ii)
Since P01(L) = P01(P),
`(2x + 18)/(3x + 24) xx 100 = (5)/(7) xx 100` ...[From (i) and (ii)]
∴ `(2x + 18)/(3x + 24) = (5)/(7)`
∴ 14x + 126 = 15x + 120
∴ 126 – 120 = 15x – 14x
∴ x = 6.
संबंधित प्रश्न
Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall - Edgeworth’s Price index numbers.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 9 | 20 | 8 |
II | 20 | 5 | 30 | 4 |
III | 30 | 7 | 50 | 5 |
IV | 40 | 8 | 60 | 6 |
If ∑ p0q0 = 140, ∑ p0q1 = 200, ∑ p1q0 = 350, ∑ p1q1 = 460, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.
Given that Laspeyre’s and Dorbish-Bowley’s Price Index Numbers are 160.32 and 164.18 respectively, find Paasche’s Price Index Number.
If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers.
Choose the correct alternative :
Marshall-Edgeworth’s Price Index Number is given by
Choose the correct alternative :
Walsh’s Price Index Number is given by
Fill in the blank :
Paasche’s Price Index Number is given by _______.
Walsh’s Price Index Number is given by _______.
`(sum"p"_0sqrt("q"_0"q"_1))/(sum"p"_1sqrt("q"_0"q"_1)) xx 100` is Walsh’s Price Index Number.
Solve the following problem :
Calculate Dorbish-Bowley’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 11 | 28 |
II | 9 | 25 | 12 | 22 |
III | 10 | 15 | 13 | 11 |
Solve the following problem :
Calculate Marshall-Edgeworth’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
X | 12 | 35 | 15 | 25 |
Y | 29 | 50 | 30 | 70 |
Solve the following problem :
Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price P0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
Solve the following problem:
If find x is Walsh’s Price Index Number is 150 for the following data
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 5 | 3 | 10 | 3 |
B | x | 4 | 16 | 9 |
C | 15 | 5 | 23 | 5 |
D | 10 | 2 | 26 | 8 |
Solve the following problem :
Find x if Paasche’s Price Index Number is 140 for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 20 | 8 | 40 | 7 |
B | 50 | 10 | 60 | 10 |
C | 40 | 15 | 60 | x |
D | 12 | 15 | 15 | 15 |
Solve the following problem :
If `sum"p_"0"q"_0 = 120, sum "p"_0"q"_1 = 160, sum "p"_1"q"_1 = 140, and sum "p"_1"q"+0` = 200, find Laspeyre’s, Paasche’s Dorbish-Bowley’s and Marshall Edgeworth’s Price Index Number.
Choose the correct alternative:
Dorbish–Bowley’s Price Index Number is
Choose the correct alternative:
Walsh's Price Index Number is given by
Marshall-Edgeworth's Price Index Number is given by ______
State whether the following statement is True or False:
Walsh’s Price Index Number is given by `(sum"p"_1sqrt("q"_0"q"_1))/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`
Calculate Marshall-Edgeworth Price Index Number for following.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 8 | 20 | 11 | 15 |
B | 7 | 10 | 12 | 10 |
C | 3 | 30 | 5 | 25 |
D | 2 | 50 | 4 | 35 |
Given P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320, Find P01(L)
`sqrt((sump_1q_0)/(sump_0q_0)) xx sqrt((sump_1q_1)/(sump_0q_1)) xx 100`
If ∑ p0q0 = 120, ∑ p0q1 = 160, ∑ p1q1 = 140, ∑ p1qo = 200, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.
In the following table, Laspeyre's and Paasche's Price Index Numbers are equal. Complete the following activity to find x :
Commodity | Base Year | Current year | ||
Price | Quantity | Price | Quantity | |
A | 2 | 10 | 2 | 5 |
B | 2 | 5 | x | 2 |
Solution: P01(L) = P01(P)
`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = square/(sum "p"_0"q"_1) xx 100`
`(20 + 5x)/square xx 100 = square/14 xx 100`
∴ x = `square`