हिंदी

Choose the correct alternative: Walsh's Price Index Number is given by - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative:

Walsh's Price Index Number is given by

विकल्प

  • `(sum"p"_0 sqrt("p"_0"p"_1))/(sum"q"_1 sqrt("p"_0"p"_1)) xx 100`

  • `(sum"p"_0 sqrt("q"_0"q"_1))/(sum"p"_1 sqrt("q"_0"q"_1)) xx 100`

  • `(sum"q"_1 sqrt("p"_0"p"_1))/(sum"q"_0 sqrt("p"_0"p"_1)) xx 100`

  • `(sum"p"_1 sqrt("q"_0"q"_1))/(sum"p"_0 sqrt("q"_0"q"_1)) xx 100`

MCQ

उत्तर

`(sum"p"_1 sqrt("q"_0"q"_1))/(sum"p"_0 sqrt("q"_0"q"_1)) xx 100`

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.5: Index Numbers - Q.1

संबंधित प्रश्न

Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and MarshallEdgeworth’s Price index numbers.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 8 20 11 15
B 7 10 12 10
C 3 30 5 25
D 2 50 4 35

If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers.


Laspeyre’s Price Index Number is given by ______.


Paasche’s Price Index Number is given by ______


Dorbish-Bowley’s Price Index Number is given by ______.


Laspeyre’s Price Index Number is given by _______.


Fill in the blank :

Dorbish-Bowley’s Price Index Number is given by _______.


State whether the following is True or False :

`sum("p"_1"q"_1)/("p"_0"q"_1)` is Laspeyre’s Price Index Number.


State whether the following is True or False :

`(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx (sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is Dorbish-Bowley’s Price Index Number.


Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base year Current year
  Price
p0
Quantity
q0
price
p1
Quantity
q1
A 20 18 30 15
B 25 8 28 5
C 32 5 40 7
D 12 10 18 10

Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
P0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solve the following problem:

If find x is Walsh’s Price Index Number is 150 for the following data

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 5 3 10 3
B x 4 16 9
C 15 5 23 5
D 10 2 26 8

If Laspeyre’s and Dorbish’s Price Index Numbers are 150.2 and 152.8 respectively, find Paasche’s Price Index Number.


Solve the following problem :

If `sum"p_"0"q"_0 = 120, sum "p"_0"q"_1 = 160, sum "p"_1"q"_1 = 140, and sum "p"_1"q"+0` = 200, find Laspeyre’s, Paasche’s Dorbish-Bowley’s and Marshall Edgeworth’s Price Index Number.


Solve the following problem :

Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.


Choose the correct alternative:

Price Index Number by using Weighted Aggregate Method is given by


Choose the correct alternative:

Dorbish–Bowley’s Price Index Number is


Choose the correct alternative:

Fisher’s Price Index Number is


State whether the following statement is True or False:

Walsh’s Price Index Number is given by `(sum"p"_1sqrt("q"_0"q"_1))/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`


State whether the following statement is True or False:

`(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100` is Paasche’s Price Index Number


State whether the following statement is True or False:

`(sum"p"_0sqrt("q"_0 + "q"_1))/(sum"p"_1sqrt("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth Price Index Number


Calculate Marshall-Edgeworth Price Index Number for following.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 8 20 11 15
B 7 10 12 10
C 3 30 5 25
D 2 50 4 35

If Laspeyre’s and Paasche’s Price Index Numbers are 50 and 72 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Numbers


Given P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320, Find P01(L)


If `sum"p"_0"q"_0` = 150, `sum"p"_0"q"_1` = 250, `sum"p"_1"q"_1` = 375 and P01(L) = 140. Find P01(M-E)


Given the following table, find Walsh’s Price Index Number by completing the activity.

Commodity p0 q0 p1 q1 q0q1 `sqrt("q"_0"q"_1)` p0`sqrt("q"_0"q"_1)` p1`sqrt("q"_0"q"_1)`
I 20 9 30 4 36 `square` `square` 180
II 10 5 50 5 `square` 5 50 `square`
III 40 8 10 2 16 `square` 160 `square`
IV 30 4 20 1 `square` 2 `square` 40
Total     390 `square`

Walsh’s price Index Number is

P01(W) = `square/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`

= `510/square xx 100`

= `square`


Laspeyre’s Price Index Number uses current year’s quantities as weights.


In the following table, Laspeyre's and Paasche's Price Index Numbers are equal. Complete the following activity to find x :

Commodity Base Year Current year
Price Quantity Price Quantity
A 2 10 2 5
B 2 5 x 2

Solution: P01(L) = P01(P)

`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = square/(sum "p"_0"q"_1) xx 100`

`(20 + 5x)/square xx 100 = square/14 xx 100`

∴ x = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×