Advertisements
Advertisements
प्रश्न
If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers.
उत्तर
Laspeyre’s Price Index Number:
`"P"_01("L") = (sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100`
Paasche’s Price Index Number:
`"P"_01("P") = (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`
It is given that
P01(L) = 4 × P01(P)
∴ `(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = 4 xx (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`
∴ `(sum "p"_1"q"_0)/(sum "p"_0"q"_0) = 4 xx (sum "p"_1"q"_1)/(sum "p"_0"q"_1)`
If we denote `(sum "p"_1"q"_0)/(sum "p"_0"q"_0) = "A", (sum "p"_1"q"_1)/(sum "p"_0"q"_1) = "B"`,
then A = 4B
Dorbish-Bowley’s Price Index Number:
`"P"_01("D - B") = ("P"_01("L") + "P"_01("P"))/2`
`"P"_01("D - B") = ((sum "p"_1"q"_0)/(sum "p"_0"q"_0) + (sum "p"_1"q"_1)/(sum "p"_0"q"_1))/2 xx 100`
`= ("A + B")/2 xx 100`
`= (4"B" + "B")/2 xx 100` ....[∵ A = 4B]
`= "5B"/2 xx 100`
= 250 B
∴ P01(D-B) = 250 B ....(i)
Fisher’s Price Index Number:
`"P"_01 ("F") = sqrt((sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx (sum "p"_1"q"_1)/(sum "p"_0"q"_1)) xx 100`
`= sqrt("A" xx "B") xx 100`
`= sqrt("4B" xx "B") xx 100`
`= sqrt("4B"^2) xx 100`
= 2B × 100
∴ P01 (F) = 200 B ...(ii)
Dividing (i) by (ii), we get
`("P"_01 ("D - B"))/("P"_01 ("F")) = (250"B")/(200 "B")`
∴ `("P"_01 ("D - B"))/("P"_01 ("F")) = 5/4`
∴ `"P"_01 ("D - B") = 5/4 xx "P"_01 ("F")`
APPEARS IN
संबंधित प्रश्न
Calculate Walsh’s Price Index Number.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 12 | 20 | 9 |
II | 20 | 4 | 25 | 8 |
III | 30 | 13 | 40 | 27 |
IV | 60 | 29 | 75 | 36 |
Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.
Choose the correct alternative :
The price Index Number by Weighted Aggregate Method is given by ______.
Laspeyre’s Price Index Number is given by ______.
Laspeyre’s Price Index Number is given by _______.
Walsh’s Price Index Number is given by _______.
`(sump_1q_0)/(sump_0q_0) xx 100` is Paasche’s Price Index Number.
State whether the following is True or False :
`sum("p"_1"q"_1)/("p"_0"q"_1)` is Laspeyre’s Price Index Number.
State whether the following is True or False :
`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.
Solve the following problem :
Calculate Dorbish-Bowley’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 11 | 28 |
II | 9 | 25 | 12 | 22 |
III | 10 | 15 | 13 | 11 |
Solve the following problem :
Find x if Paasche’s Price Index Number is 140 for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 20 | 8 | 40 | 7 |
B | 50 | 10 | 60 | 10 |
C | 40 | 15 | 60 | x |
D | 12 | 15 | 15 | 15 |
Solve the following problem :
Given that Laspeyre’s and Paasche’s Price Index Numbers are 25 and 16 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Number.
Choose the correct alternative:
The formula P01 = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is for
Calculate
a) Laspeyre’s
b) Passche’s
c) Dorbish-Bowley’s Price Index Numbers for following data.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 10 | 9 | 50 | 8 |
B | 20 | 5 | 60 | 4 |
C | 30 | 7 | 70 | 3 |
D | 40 | 8 | 80 | 2 |
If P01 (L) = 121, P01 (P) = 100, then P01 (F) = ______.
Calculate Marshall – Edgeworth’s price index number for the following data:
Commodity | Base year | Current year | ||
Price | Quantity | Price | Quantity | |
P | 12 | 20 | 18 | 24 |
Q | 14 | 12 | 21 | 16 |
R | 8 | 10 | 12 | 18 |
S | 16 | 15 | 20 | 25 |
In the following table, Laspeyre's and Paasche's Price Index Numbers are equal. Complete the following activity to find x :
Commodity | Base Year | Current year | ||
Price | Quantity | Price | Quantity | |
A | 2 | 10 | 2 | 5 |
B | 2 | 5 | x | 2 |
Solution: P01(L) = P01(P)
`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = square/(sum "p"_0"q"_1) xx 100`
`(20 + 5x)/square xx 100 = square/14 xx 100`
∴ x = `square`