हिंदी

If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers.

योग

उत्तर

Laspeyre’s Price Index Number:

`"P"_01("L") = (sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100`

Paasche’s Price Index Number:

`"P"_01("P") = (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`

It is given that

P01(L) = 4 × P01(P)

∴ `(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = 4 xx (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`

∴ `(sum "p"_1"q"_0)/(sum "p"_0"q"_0) = 4 xx (sum "p"_1"q"_1)/(sum "p"_0"q"_1)`

If we denote `(sum "p"_1"q"_0)/(sum "p"_0"q"_0) = "A", (sum "p"_1"q"_1)/(sum "p"_0"q"_1) = "B"`,

then A = 4B

Dorbish-Bowley’s Price Index Number:

`"P"_01("D - B") = ("P"_01("L") + "P"_01("P"))/2`

`"P"_01("D - B") = ((sum "p"_1"q"_0)/(sum "p"_0"q"_0) + (sum "p"_1"q"_1)/(sum "p"_0"q"_1))/2 xx 100`

`= ("A + B")/2 xx 100`

`= (4"B" + "B")/2 xx 100`      ....[∵ A = 4B]

`= "5B"/2 xx 100`

= 250 B

∴ P01(D-B) = 250 B    ....(i)

Fisher’s Price Index Number:

`"P"_01 ("F") = sqrt((sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx (sum "p"_1"q"_1)/(sum "p"_0"q"_1)) xx 100`

`= sqrt("A" xx "B") xx 100`

`= sqrt("4B" xx "B") xx 100`

`= sqrt("4B"^2) xx 100`

= 2B × 100

∴ P01 (F) = 200 B     ...(ii)

Dividing (i) by (ii), we get

`("P"_01 ("D - B"))/("P"_01 ("F")) = (250"B")/(200 "B")`

∴ `("P"_01 ("D - B"))/("P"_01 ("F")) = 5/4`

∴ `"P"_01 ("D - B") = 5/4 xx "P"_01 ("F")`

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Index Numbers - Exercise 5.2 [पृष्ठ ८२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 5 Index Numbers
Exercise 5.2 | Q 1.1 | पृष्ठ ८२

संबंधित प्रश्न

Calculate Walsh’s Price Index Number.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 12 20 9
II 20 4 25 8
III 30 13 40 27
IV 60 29 75 36

Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.


Choose the correct alternative :

The price Index Number by Weighted Aggregate Method is given by ______.


Laspeyre’s Price Index Number is given by ______.


Laspeyre’s Price Index Number is given by _______.


Walsh’s Price Index Number is given by _______.


`(sump_1q_0)/(sump_0q_0) xx 100` is Paasche’s Price Index Number.


State whether the following is True or False :

`sum("p"_1"q"_1)/("p"_0"q"_1)` is Laspeyre’s Price Index Number.


State whether the following is True or False :

`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.


Solve the following problem :

Calculate Dorbish-Bowley’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 11 28
II 9 25 12 22
III 10 15 13 11

Solve the following problem :

Find x if Paasche’s Price Index Number is 140 for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 20 8 40 7
B 50 10 60 10
C 40 15 60 x
D 12 15 15 15

Solve the following problem :

Given that Laspeyre’s and Paasche’s Price Index Numbers are 25 and 16 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Number.


Choose the correct alternative:

The formula P01 = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is for


Calculate
a) Laspeyre’s
b) Passche’s
c) Dorbish-Bowley’s Price Index Numbers for following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 10 9 50 8
B 20 5 60 4
C 30 7 70 3
D 40 8 80 2

If P01 (L) = 121, P01 (P) = 100, then P01 (F) = ______.


Calculate Marshall – Edgeworth’s price index number for the following data:

Commodity Base year Current year
Price Quantity Price Quantity
P 12 20 18 24
Q 14 12 21 16
R 8 10 12 18
S 16 15 20 25

In the following table, Laspeyre's and Paasche's Price Index Numbers are equal. Complete the following activity to find x :

Commodity Base Year Current year
Price Quantity Price Quantity
A 2 10 2 5
B 2 5 x 2

Solution: P01(L) = P01(P)

`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = square/(sum "p"_0"q"_1) xx 100`

`(20 + 5x)/square xx 100 = square/14 xx 100`

∴ x = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×