English

Calculate Marshall – Edgeworth’s price index number for the following data: Commodity Base year Current year Price Quantity Price Quantity P 12 20 18 24 Q 14 12 21 16 R 8 10 12 18 S 16 15 20 25 - Mathematics and Statistics

Advertisements
Advertisements

Question

Calculate Marshall – Edgeworth’s price index number for the following data:

Commodity Base year Current year
Price Quantity Price Quantity
P 12 20 18 24
Q 14 12 21 16
R 8 10 12 18
S 16 15 20 25
Chart
Sum

Solution

Commodity Base year Current year p1q0 p0q0 p1q1 p0q1
  p0 q0 p1 q1        
P 12 20 18 24 360 240 432 288
Q 14 12 21 16 252 168 336 224
R 8 10 12 18 120 80 216 144
S 16 15 20 25 300 240 500 400
Total 1032 728 1484 1056

P01(M – E) = `(sump_1q_0 + sump_1q_1)/(sump_0q_0 + sump_0q_1) xx 100`

= `(1032 + 1484)/(728 + 1056) xx 100`

= `2516/1784 xx 100`

= 141.03

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  Is there an error in this question or solution?
2022-2023 (March) Official

RELATED QUESTIONS

If P01(L) = 90 and P01(P) = 40, find P01(D – B) and P01(F).


Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.


If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers.


Paasche’s Price Index Number is given by ______


Dorbish-Bowley’s Price Index Number is given by ______.


Choose the correct alternative :

Fisher’s Price Number is given by


Choose the correct alternative :

Marshall-Edgeworth’s Price Index Number is given by


Fill in the blank :

Dorbish-Bowley’s Price Index Number is given by _______.


Fill in the blank :

Marshall-Edgeworth’s Price Index Number is given by _______.


`(sum"p"_0sqrt("q"_0"q"_1))/(sum"p"_1sqrt("q"_0"q"_1)) xx 100` is Walsh’s Price Index Number.


Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
P0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Find x if Laspeyre’s Price Index Number is same as Paasche’s Price Index Number for the following data

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 3 x 2 5
B 4 6 3 5

Solve the following problem :

Find x if Paasche’s Price Index Number is 140 for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 20 8 40 7
B 50 10 60 10
C 40 15 60 x
D 12 15 15 15

If Laspeyre’s and Dorbish’s Price Index Numbers are 150.2 and 152.8 respectively, find Paasche’s Price Index Number.


Solve the following problem :

If `sum"p_"0"q"_0 = 120, sum "p"_0"q"_1 = 160, sum "p"_1"q"_1 = 140, and sum "p"_1"q"+0` = 200, find Laspeyre’s, Paasche’s Dorbish-Bowley’s and Marshall Edgeworth’s Price Index Number.


Choose the correct alternative:

Walsh's Price Index Number is given by


Choose the correct alternative:

Fisher’s Price Index Number is


Fisher's Price Index Number is given by ______.


State whether the following statement is True or False:

`(sum"p"_0sqrt("q"_0 + "q"_1))/(sum"p"_1sqrt("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth Price Index Number


State whether the following statement is True or False:

`[sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) + (sumsqrt("q"_0"q"_1))/(sum("p"_0 + "p"_1))] xx 100` is Fisher’s Price Index Number.


If P01(L) = 40 and P01(P) = 90, find P01(D-B) and P01(F).


If Laspeyre’s and Paasche’s Price Index Numbers are 50 and 72 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Numbers


Given P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320, Find P01(L)


Find the missing price if Laspeyre’s and Paasche’s Price Index Numbers are equal for following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 1 10 2 5
B 1 12

If P01 (L) = 121, P01 (P) = 100, then P01 (F) = ______.


Complete the following activity to calculate, Laspeyre's and Paasche's Price Index Number for the following data :

Commodity Base Year Current Year
Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solution:

Commodity Base Year Current Year p1q0 p0q0 p1q1 p0q1
  p0 q0 p1 q1
I 8 30 12 25 360 240 300 200
II 10 42 20 16 840 420 320 160
Total         `bb(sump_1q_0=1200)` `bb(sump_0q_0=660)` `bb(sump_1q_1=620)` `bb(sump_0q_1=360)`

Laspeyre's Price Index Number:

P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100 = square/660xx100`

∴ P01(L) = `square`

Paasche 's Price Index Number:

P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100=(620)/(square) xx 100`

∴ P01(P) = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×