Advertisements
Advertisements
प्रश्न
Choose the correct alternative :
Fisher’s Price Number is given by
विकल्प
`sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx (sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100`
`sqrt((sum"p"_0"q"_0)/(sum"p"_1"q"_0) xx (sum"p"_0"q"_1)/(sum"p"_1"q"_1)) xx 100`
`sqrt((sum"p"_0"q"_1)/(sum"p"_0"q"_0) xx (sum"p"_1"q"_1)/(sum"p"_1"q"_0)) xx 100`
`sqrt((sum"p"_1"q"_0)/(sum"p"_1"q"_1) xx (sum"p"_0"q"_0)/(sum"p"_0"q"_1)) xx 100`
उत्तर
Fisher’s Price Number is given by `sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx (sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100`.
APPEARS IN
संबंधित प्रश्न
Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and MarshallEdgeworth’s Price index numbers.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 8 | 20 | 11 | 15 |
B | 7 | 10 | 12 | 10 |
C | 3 | 30 | 5 | 25 |
D | 2 | 50 | 4 | 35 |
Calculate Walsh’s Price Index Number.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
L | 4 | 16 | 3 | 19 |
M | 6 | 16 | 8 | 14 |
N | 8 | 28 | 7 | 32 |
If ∑ p0q0 = 140, ∑ p0q1 = 200, ∑ p1q0 = 350, ∑ p1q1 = 460, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.
Choose the correct alternative :
The price Index Number by Weighted Aggregate Method is given by ______.
Fill in the blank :
Paasche’s Price Index Number is given by _______.
State whether the following is True or False :
`(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx (sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is Dorbish-Bowley’s Price Index Number.
State whether the following is True or False :
`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.
State whether the following is True or False :
`sqrt(("p"_1"q"_0)/(sum"p"_0"q"_0)) xx sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100` is Fisher’s Price Index Number.
Solve the following problem :
Calculate Marshall-Edgeworth’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
X | 12 | 35 | 15 | 25 |
Y | 29 | 50 | 30 | 70 |
Solve the following problem :
Find x if Paasche’s Price Index Number is 140 for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 20 | 8 | 40 | 7 |
B | 50 | 10 | 60 | 10 |
C | 40 | 15 | 60 | x |
D | 12 | 15 | 15 | 15 |
If Laspeyre’s and Dorbish’s Price Index Numbers are 150.2 and 152.8 respectively, find Paasche’s Price Index Number.
Solve the following problem :
Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.
Solve the following problem :
Given that `sum "p"_1"q"_1 = 300, sum "p"_0"q"_1 = 320, sum "p"_0"q"_0` = 120, and Marshall- Edgeworth’s Price Index Number is 120, find `sum"p"_1"q"_0` and Paasche’s Price Index Number.
Choose the correct alternative:
Fisher’s Price Index Number is
State whether the following statement is True or False:
Walsh’s Price Index Number is given by `(sum"p"_1sqrt("q"_0"q"_1))/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`
If Laspeyre’s and Paasche’s Price Index Numbers are 50 and 72 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Numbers
State whether the following statement is true or false:
Dorbish-Bowley's Price Index Number is the square root of the product of Laspeyre's and Paasche's Index Numbers.
`sqrt((sump_1q_0)/(sump_0q_0)) xx sqrt((sump_1q_1)/(sump_0q_1)) xx 100`