हिंदी

Find the missing price if Laspeyre’s and Paasche’s Price Index Numbers are equal for following data. Commodity Base Year Current Year Price Quantity Price Quantity A 1 10 2 5 B 1 5 – 12 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the missing price if Laspeyre’s and Paasche’s Price Index Numbers are equal for following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 1 10 2 5
B 1 12
सारिणी
योग

उत्तर

Let us denote the missing value by x and reconstruct the table as follows.

Commodity Base Year Current Year p0q0 p1q0 p1q1 p0q1
p0 q0 p1 q1
A 1 10 2 5 10 20 10 5
B 1 5 x 12 5 5x 1 12
Total         15 20 + 5x 10 + 12x 17

The above table gives

`sum"p"0"q"_0` = 15, `sum"p"_1"q"_0` = 20  5x, `sum"p"_1"q"_1` = 10 + 12x, `sum"p"_0"q"_1` = 17

It is given that

P01(L) = P01(P)

`(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100`

`(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100`

∴ `(5x + 20)/15 = (12x + 10)/17`

∴ `(5(x + 4))/15 = (12x + 10)/17`

∴ 17(x + 4) = 3(12x + 10)

∴ 17x + 68 = 36x + 30

∴ x = 2

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.5: Index Numbers - Q.4

संबंधित प्रश्न

Calculate Walsh’s Price Index Number.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 12 20 9
II 20 4 25 8
III 30 13 40 27
IV 60 29 75 36

If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers.


Choose the correct alternative :

Marshall-Edgeworth’s Price Index Number is given by


State whether the following is True or False :

`sum("p"_1"q"_1)/("p"_0"q"_1)` is Laspeyre’s Price Index Number.


`(sum"p"_0("q"_0 + "q"_1))/(sum"p"_1("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth’s Price Index Number.


Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base year Current year
  Price
p0
Quantity
q0
price
p1
Quantity
q1
A 20 18 30 15
B 25 8 28 5
C 32 5 40 7
D 12 10 18 10

Solve the following problem :

Calculate Dorbish-Bowley’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 11 28
II 9 25 12 22
III 10 15 13 11

Solve the following problem :

Calculate Marshall-Edgeworth’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
X 12 35 15 25
Y 29 50 30 70

Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
P0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Find x if Laspeyre’s Price Index Number is same as Paasche’s Price Index Number for the following data

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 3 x 2 5
B 4 6 3 5

Solve the following problem :

Given that Laspeyre’s and Paasche’s Price Index Numbers are 25 and 16 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Number.


Choose the correct alternative:

The formula P01 = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is for


Choose the correct alternative:

Fisher’s Price Index Number is


State whether the following statement is True or False:

`[sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) + (sumsqrt("q"_0"q"_1))/(sum("p"_0 + "p"_1))] xx 100` is Fisher’s Price Index Number.


Given P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320, Find P01(L)


State whether the following statement is true or false:

Dorbish-Bowley's Price Index Number is the square root of the product of Laspeyre's and Paasche's Index Numbers.


If P01 (L) = 121, P01 (P) = 100, then P01 (F) = ______.


Laspeyre’s Price Index Number uses current year’s quantities as weights.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×