Advertisements
Advertisements
प्रश्न
Find the missing price if Laspeyre’s and Paasche’s Price Index Numbers are equal for following data.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 1 | 10 | 2 | 5 |
B | 1 | 5 | – | 12 |
उत्तर
Let us denote the missing value by x and reconstruct the table as follows.
Commodity | Base Year | Current Year | p0q0 | p1q0 | p1q1 | p0q1 | ||
p0 | q0 | p1 | q1 | |||||
A | 1 | 10 | 2 | 5 | 10 | 20 | 10 | 5 |
B | 1 | 5 | x | 12 | 5 | 5x | 1 | 12 |
Total | 15 | 20 + 5x | 10 + 12x | 17 |
The above table gives
`sum"p"0"q"_0` = 15, `sum"p"_1"q"_0` = 20 5x, `sum"p"_1"q"_1` = 10 + 12x, `sum"p"_0"q"_1` = 17
It is given that
P01(L) = P01(P)
`(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100`
`(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100`
∴ `(5x + 20)/15 = (12x + 10)/17`
∴ `(5(x + 4))/15 = (12x + 10)/17`
∴ 17(x + 4) = 3(12x + 10)
∴ 17x + 68 = 36x + 30
∴ x = 2
APPEARS IN
संबंधित प्रश्न
Calculate Walsh’s Price Index Number.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 12 | 20 | 9 |
II | 20 | 4 | 25 | 8 |
III | 30 | 13 | 40 | 27 |
IV | 60 | 29 | 75 | 36 |
If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers.
Choose the correct alternative :
Marshall-Edgeworth’s Price Index Number is given by
State whether the following is True or False :
`sum("p"_1"q"_1)/("p"_0"q"_1)` is Laspeyre’s Price Index Number.
`(sum"p"_0("q"_0 + "q"_1))/(sum"p"_1("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth’s Price Index Number.
Solve the following problem :
Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.
Commodity | Base year | Current year | ||
Price p0 |
Quantity q0 |
price p1 |
Quantity q1 |
|
A | 20 | 18 | 30 | 15 |
B | 25 | 8 | 28 | 5 |
C | 32 | 5 | 40 | 7 |
D | 12 | 10 | 18 | 10 |
Solve the following problem :
Calculate Dorbish-Bowley’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 11 | 28 |
II | 9 | 25 | 12 | 22 |
III | 10 | 15 | 13 | 11 |
Solve the following problem :
Calculate Marshall-Edgeworth’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
X | 12 | 35 | 15 | 25 |
Y | 29 | 50 | 30 | 70 |
Solve the following problem :
Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price P0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
Find x if Laspeyre’s Price Index Number is same as Paasche’s Price Index Number for the following data
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 3 | x | 2 | 5 |
B | 4 | 6 | 3 | 5 |
Solve the following problem :
Given that Laspeyre’s and Paasche’s Price Index Numbers are 25 and 16 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Number.
Choose the correct alternative:
The formula P01 = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is for
Choose the correct alternative:
Fisher’s Price Index Number is
State whether the following statement is True or False:
`[sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) + (sumsqrt("q"_0"q"_1))/(sum("p"_0 + "p"_1))] xx 100` is Fisher’s Price Index Number.
Given P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320, Find P01(L)
State whether the following statement is true or false:
Dorbish-Bowley's Price Index Number is the square root of the product of Laspeyre's and Paasche's Index Numbers.
If P01 (L) = 121, P01 (P) = 100, then P01 (F) = ______.
Laspeyre’s Price Index Number uses current year’s quantities as weights.