मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following problem : In the following probability distribution of a r.v.X. x 1 2 3 4 5 P (x) 120 320 a 2a 120 Find a and obtain the c.d.f. of X. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

In the following probability distribution of a r.v.X.

x 1 2 3 4 5
P (x) `(1)/(20)` `(3)/(20)` a 2a `(1)/(20)`

Find a and obtain the c.d.f. of X.

बेरीज

उत्तर

Since the given table represents a p.m.f. of r.v. X,

\[\sum\limits_{x=1}^{5}\text{P}(x) = 1\]

∴ P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) = 1

∴ `(1)/(20) + (3)/(20) + "a" + 2"a" + (1)/(20)` = 1

∴ 3a = `1 - (5)/(20)`

∴ 3a = `1 - (1)/(4)`

∴ 3a = `(3)/(4)`

∴ a = `(1)/(4)`
By definition of c.d.f.,
F(x) = P(X ≤ x)

F(1) = P(X ≤ 1) = P(1) = `(1)/(20)`

F(2) = P(X ≤ 2) = F(1) + P(2)

= `(1)/(20) + (3)/(20) = (4)/(20)`

F(3) = P(X ≤ 3)
= F(2) + P(3)

= `(4)/(20) + "a" = (4)/(20) + (1)/(4) = (4)/(20) + (5)/(20) = (9)/(20)`

F(4) = P(X ≤ 4)
= F(3) + P(4)

= `(9)/(20) + 2"a" = (9)/(20) + (1)/(2) = (9)/(20) + (10)/(20) = (19)/(20)`

F(5) = P(X ≤ 5)
= F(4) + P(5)

= `(19)/(20) + (1)/(20)` = 1
∴ c.d.f. of X is as follows:

xi 1 2 3 4 5
F(xi) `(1)/(20)` `(4)/(20)` `(9)/(20)` `(19)/(20)` 1
shaalaa.com
Probability Distribution of a Continuous Random Variable
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Probability Distributions - Part I [पृष्ठ १५५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Probability Distributions
Part I | Q 1.05 | पृष्ठ १५५

संबंधित प्रश्‍न

Verify which of the following is p.d.f. of r.v. X:

f(x) = x, for 0 ≤ x ≤ 1 and 2 - x for 1 < x < 2


Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.10 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is even


Check whether the following is a p.d.f. 

f(x) = `{(x, "for"  0 ≤ x ≤ 1),(2 - x, "for"  1 < x ≤ 2.):}`


Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.

f(x) = `{(0.5x,  "for" 0 ≤ x ≤ 2),(0,  "otherwise".):}`
Calculate : P(X ≤ 1)


Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.

f(x) = `{(0.5x, "for" 0 ≤ x ≤ 2),(0, "otherwise".):}`
Calculate : P(X ≥ 1.5)


Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(X < – 0.5 or X > 0.5)


Following is the p. d. f. of a continuous r.v. X.

f(x) = `{(x/8,  "for"  0 < x < 4),(0,  "otherwise".):}`
Find F(x) at x = 0.5, 1.7 and 5.


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8),  0 < x < 2),(0,   "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < 1)


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < –2)


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8),  0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X > 0)


Fill in the blank :

If x is continuous r.v. and F(xi) = P(X ≤ xi) = `int_(-oo)^(oo) f(x)*dx` then F(x) is called _______


State whether the following is True or False :

If X ~ B(n,p) and n = 6 and P(X = 4) = P(X = 2) then p = `(1)/(2)`


Solve the following problem :

Determine k if the p.d.f. of the r.v. is

f(x) = `{("ke"^(-thetax),  "for"  0 ≤ x < oo),(0, "otherwise".):}`
Find `"P"("X" > 1/theta)` and determine M is P(0 < X < M) = `(1)/(2)`


State whether the following statement is True or False:

If f(x) = `{:("k"x  (1 - x)",", "for"  0 < x < 1),(= 0",", "otherwise"):}`
is the p.d.f. of a r.v. X, then k = 12


State whether the following statement is True or False:

The cumulative distribution function (c.d.f.) of a continuous random variable X is denoted by F and defined by

F(x) = `{:(0",",  "for all"  x ≤ "a"),( int_"a"^x  f(x) "d"x",",  "for all"  x ≥ "a"):}`


Find k, if the following function is p.d.f. of r.v.X:

f(x) = `{:(kx^2(1 - x)",", "for"  0 < x < 1),(0",", "otherwise"):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×