Advertisements
Advertisements
प्रश्न
Solve the following problem :
In the following probability distribution of a r.v.X.
x | 1 | 2 | 3 | 4 | 5 |
P (x) | `(1)/(20)` | `(3)/(20)` | a | 2a | `(1)/(20)` |
Find a and obtain the c.d.f. of X.
उत्तर
Since the given table represents a p.m.f. of r.v. X,
\[\sum\limits_{x=1}^{5}\text{P}(x) = 1\]
∴ P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) = 1
∴ `(1)/(20) + (3)/(20) + "a" + 2"a" + (1)/(20)` = 1
∴ 3a = `1 - (5)/(20)`
∴ 3a = `1 - (1)/(4)`
∴ 3a = `(3)/(4)`
∴ a = `(1)/(4)`
By definition of c.d.f.,
F(x) = P(X ≤ x)
F(1) = P(X ≤ 1) = P(1) = `(1)/(20)`
F(2) = P(X ≤ 2) = F(1) + P(2)
= `(1)/(20) + (3)/(20) = (4)/(20)`
F(3) = P(X ≤ 3)
= F(2) + P(3)
= `(4)/(20) + "a" = (4)/(20) + (1)/(4) = (4)/(20) + (5)/(20) = (9)/(20)`
F(4) = P(X ≤ 4)
= F(3) + P(4)
= `(9)/(20) + 2"a" = (9)/(20) + (1)/(2) = (9)/(20) + (10)/(20) = (19)/(20)`
F(5) = P(X ≤ 5)
= F(4) + P(5)
= `(19)/(20) + (1)/(20)` = 1
∴ c.d.f. of X is as follows:
xi | 1 | 2 | 3 | 4 | 5 |
F(xi) | `(1)/(20)` | `(4)/(20)` | `(9)/(20)` | `(19)/(20)` | 1 |
APPEARS IN
संबंधित प्रश्न
Verify which of the following is p.d.f. of r.v. X:
f(x) = x, for 0 ≤ x ≤ 1 and 2 - x for 1 < x < 2
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is even
Check whether the following is a p.d.f.
f(x) = `{(x, "for" 0 ≤ x ≤ 1),(2 - x, "for" 1 < x ≤ 2.):}`
Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.
f(x) = `{(0.5x, "for" 0 ≤ x ≤ 2),(0, "otherwise".):}`
Calculate : P(X ≤ 1)
Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.
f(x) = `{(0.5x, "for" 0 ≤ x ≤ 2),(0, "otherwise".):}`
Calculate : P(X ≥ 1.5)
Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(X < – 0.5 or X > 0.5)
Following is the p. d. f. of a continuous r.v. X.
f(x) = `{(x/8, "for" 0 < x < 4),(0, "otherwise".):}`
Find F(x) at x = 0.5, 1.7 and 5.
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < 1)
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < –2)
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X > 0)
Fill in the blank :
If x is continuous r.v. and F(xi) = P(X ≤ xi) = `int_(-oo)^(oo) f(x)*dx` then F(x) is called _______
State whether the following is True or False :
If X ~ B(n,p) and n = 6 and P(X = 4) = P(X = 2) then p = `(1)/(2)`
Solve the following problem :
Determine k if the p.d.f. of the r.v. is
f(x) = `{("ke"^(-thetax), "for" 0 ≤ x < oo),(0, "otherwise".):}`
Find `"P"("X" > 1/theta)` and determine M is P(0 < X < M) = `(1)/(2)`
State whether the following statement is True or False:
If f(x) = `{:("k"x (1 - x)",", "for" 0 < x < 1),(= 0",", "otherwise"):}`
is the p.d.f. of a r.v. X, then k = 12
State whether the following statement is True or False:
The cumulative distribution function (c.d.f.) of a continuous random variable X is denoted by F and defined by
F(x) = `{:(0",", "for all" x ≤ "a"),( int_"a"^x f(x) "d"x",", "for all" x ≥ "a"):}`
Find k, if the following function is p.d.f. of r.v.X:
f(x) = `{:(kx^2(1 - x)",", "for" 0 < x < 1),(0",", "otherwise"):}`