मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f. f(x) = {k(4-x2)for-2≤x≤20otherwise.compute P(X < – 0.5 or X > 0.5) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(X < – 0.5 or X > 0.5)

बेरीज

उत्तर

Given that f(x) represents a p.d.f. of r.v. X.

∴ `int_-2^2 f(x)*dx` = 1

∴ `int_-2^2 "k"(4 - x^2)*dx` = 1

∴ `"k"[4x - x^3/3]_-2^2` = 1

∴ `"k"[(8 - 8/3) - (-8 + 8/3)]` = 1

∴ `"k"(16/3 + 16/3)` = 1

∴ `"k"(32/3)` = 1

∴ k = `(3)/(32)`

F(x) = `int_-2^2 f(x)*dx`

= `int_-2^2"k"(4 - x^2)*dx`

= `(3)/(32)[4x - x^3/3]_-2^2`

= `(3)/(32)[4x - x^3/3 + 8 - 8/3]`

∴ F(x) = `(3)/(32)[4x - x^3/3 + 16/3]`

P(X < – 0.5 or X > 0.5)

= 1 – P(– 0.5 ≤ X ≤ 0.5)

= 1 – [F(0.5) – F(– 0.5)]

= `1 - {3/32[4(0.5) - (0.5)^3/3 + 16/3] - 3/32[4(-0.5) - (0.5)^3/3 + 16/3]`

= `1 - 3/32(2 - 1/24 + 16/3 + 2 - 1/24 - 16/3)`

= `1 - 3/32(4 - 1/12)`

= `1 - (3)/(32) xx (47)/(12)`

= `1 - (47)/(128)`

= `(81)/(128)`.

shaalaa.com
Probability Distribution of a Continuous Random Variable
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Probability Distributions - Exercise 8.2 [पृष्ठ १४५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Probability Distributions
Exercise 8.2 | Q 1.07 | पृष्ठ १४५

संबंधित प्रश्‍न

Verify which of the following is p.d.f. of r.v. X:

 f(x) = sin x, for 0 ≤ x ≤ `π/2`


The following is the p.d.f. of a r.v. X.

f(x) = `{(x/(8),  "for"  0 < x < 4),(0,  "otherwise."):}`

Find P(X < 1.5),


Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.

f(x) = `{(0.5x, "for" 0 ≤ x ≤ 2),(0, "otherwise".):}`
Calculate : P(0.5 ≤ X ≤ 1.5)


Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.

f(x) = `{(0.5x, "for" 0 ≤ x ≤ 2),(0, "otherwise".):}`
Calculate : P(X ≥ 1.5)


Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by

f(x) = `{(1/5,  "for"  0 ≤ x ≤ 5),(0,  "otherwise".):}`
Find the probability that waiting time is more than 4 minutes.


Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(–1 < X < 1)


Following is the p. d. f. of a continuous r.v. X.

f(x) = `{(x/8,  "for"  0 < x < 4),(0,  "otherwise".):}`
Find expression for the c.d.f. of X.


Following is the p. d. f. of a continuous r.v. X.

f(x) = `{(x/8,  "for"  0 < x < 4),(0,  "otherwise".):}`
Find F(x) at x = 0.5, 1.7 and 5.


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8),  0 < x < 2),(0,   "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < 1)


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < –2)


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8),  0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X > 0)


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(1 < X < 2)


Choose the correct alternative :

If p.m.f. of r.v.X is given below.

x 0 1 2
P(x) q2 2pq p2 

Then Var(X) = _______


Fill in the blank :

If x is continuous r.v. and F(xi) = P(X ≤ xi) = `int_(-oo)^(oo) f(x)*dx` then F(x) is called _______


Solve the following problem :

Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(X > 0)


Solve the following problem :

Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(–1 < X < 1)


State whether the following statement is True or False:

If f(x) = `{:("k"x  (1 - x)",", "for"  0 < x < 1),(= 0",", "otherwise"):}`
is the p.d.f. of a r.v. X, then k = 12


State whether the following statement is True or False:

The cumulative distribution function (c.d.f.) of a continuous random variable X is denoted by F and defined by

F(x) = `{:(0",",  "for all"  x ≤ "a"),( int_"a"^x  f(x) "d"x",",  "for all"  x ≥ "a"):}`


Find k, if the following function is p.d.f. of r.v.X:

f(x) = `{:(kx^2(1 - x)",", "for"  0 < x < 1),(0",", "otherwise"):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×