मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following problem : Determine k if the p.d.f. of the r.v. is f(x) = {ke-θx for 0≤x<∞0otherwise.Find P(X>1θ) and determine M is P(0 < X < M) = 12 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

Determine k if the p.d.f. of the r.v. is

f(x) = `{("ke"^(-thetax),  "for"  0 ≤ x < oo),(0, "otherwise".):}`
Find `"P"("X" > 1/theta)` and determine M is P(0 < X < M) = `(1)/(2)`

बेरीज

उत्तर

Since f(x) is the p.d.f. of X.

∴ `int_0^oo f(x)*dx` = 1

∴ `int_0^oo ("ke"^(-thetax))*dx` = 1

∴ `"k"*[("e"^(-thetax))/(-theta)]_0^oo` = 1

∴ `-"k"/theta ["e"^(-thetax))]_0^oo` = 1

∴ `- "K"/theta [1/"e"^(thetax)]_0^oo` = 1

∴ `-"k"/theta(1/oo - 1/1)` = 1

∴ `-"k"/theta(0 - 1)` = 1

∴ k = `theta`

F(x) = `"k" int_0^x "e"^(-thetax)*dx`

= `theta int_0^x e^(-thetax)*dx`        ...[∵ k = θ]

= `theta[("e"^(-thetax))/-theta]_0^x`

= `-["e"^(-thetax)]_0^x`

= `- ("e"^(-thetax) - 1)`

= `1 - (1)/"e"^(thetax)`                ...(i)

∴ `"P"("X" > 1/theta) = 1 - "P"("X" ≤ 1/theta)`

= `1 - "F"(1/theta)`

= `1 - [1 - 1/"e"^(theta(1/theta))]`      ...[From (i)]

= `(1)/"e"`
Given that, P(0 < X < M) = `(1)/(2)`

∴ F(M) – F(0) = `(1)/(2)`

∴ `1 - 1/"e"^(theta"M") - 0 = (1)/(2)`       ...[From (i)]

∴ `(1)/(2) = (1)/"e"^(theta"M")`

∴ eθM = 2

∴ θM = log 2

∴ M = `(1)/theta log 2`.

shaalaa.com
Probability Distribution of a Continuous Random Variable
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Probability Distributions - Part I [पृष्ठ १५६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Probability Distributions
Part I | Q 1.15 | पृष्ठ १५६

संबंधित प्रश्‍न

Verify which of the following is p.d.f. of r.v. X:

 f(x) = 2, for 0 ≤ x ≤ 1.


It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by

f (x) = `x^2/ 3` , for –1 < x < 2 and = 0 otherwise


Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.10 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is non-negative


Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.10 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is even


The following is the p.d.f. of a r.v. X.

f(x) = `{(x/(8),  "for"  0 < x < 4),(0,  "otherwise."):}`

Find P(1 < X < 2),


The following is the p.d.f. of a r.v. X.

f(x) = `{(x/(8),  "for"  0 < x < 4),(0,  "otherwise."):}`

Find P(X > 2)


Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.

f(x) = `{(0.5x, "for" 0 ≤ x ≤ 2),(0, "otherwise".):}`
Calculate : P(X ≥ 1.5)


Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.

f(x) = `{("k"(4 - x^2),  "for" -2 ≤ x ≤ 2),(0,  "otherwise".):}`
compute P(X > 0)


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8),  0 < x < 2),(0,   "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < 1)


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8),  0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X > 0)


Solve the following problem :

In the following probability distribution of a r.v.X.

x 1 2 3 4 5
P (x) `(1)/(20)` `(3)/(20)` a 2a `(1)/(20)`

Find a and obtain the c.d.f. of X.


Solve the following problem :

Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(–1 < X < 1)


Solve the following problem :

Let X denote the reaction temperature in Celsius of a certain chemical process. Let X have the p. d. f.

f(x) = `{((1)/(10),  "for" -5 ≤ x < 5),(0, "otherwise".):}`
Compute P(X < 0).


The values of continuous r.v. are generally obtained by ______


For the following probability density function of a random variable X, find P(X < 1).

`{:(f(x) = (x + 2)/18,";"  "for" -2 < x < 4),(               = 0,","  "otherwise"):}`


For the following probability density function of a random variable X, find P(|X| < 1).

`{:(f(x) = (x + 2)/18,";"  "for" -2 < x < 4),(               = 0,","  "otherwise"):}`


Find k, if the following function is p.d.f. of r.v.X:

f(x) = `{:(kx^2(1 - x)",", "for"  0 < x < 1),(0",", "otherwise"):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×