Advertisements
Advertisements
प्रश्न
Verify which of the following is p.d.f. of r.v. X:
f(x) = 2, for 0 ≤ x ≤ 1.
उत्तर
f (x) is the p.d.f. of r.v. X if
(a) f (x) ≥ 0 for all x ∈ R and
(b) `int_(- ∞)^∞ f(x) dx = 1`
(a) f(x) = 2 ≥ 0 for 0 ≤ x ≤ 1
`int_(- ∞)^∞ f(x) dx = int_(- ∞)^0 f(x) dx + int_(0)^1 f(x) dx +int_( 1)^∞ f(x) dx`
= 0 +`int_0^1 2dx`+ 0
= [2x]01
= 2 - 0
= 2 ≠ 1
Hence, f (x) is not p.d.f. of X.
APPEARS IN
संबंधित प्रश्न
The time (in minutes) for a lab assistant to prepare the equipment for a certain experiment is a random variable taking values between 25 and 35 minutes with p.d.f
`f(x) = {{:(1/10",", 25 ≤ x ≤ 35),(0",", "otherwise"):}`
What is the probability that preparation time exceeds 33 minutes? Also, find the c.d.f. of X.
Verify which of the following is p.d.f. of r.v. X:
f(x) = sin x, for 0 ≤ x ≤ `π/2`
Verify which of the following is p.d.f. of r.v. X:
f(x) = x, for 0 ≤ x ≤ 1 and 2 - x for 1 < x < 2
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is non-negative
Check whether the following is a p.d.f.
f(x) = 2 for 0 < x < q.
The following is the p.d.f. of a r.v. X.
f(x) = `{(x/(8), "for" 0 < x < 4),(0, "otherwise."):}`
Find P(X < 1.5),
The following is the p.d.f. of a r.v. X.
f(x) = `{(x/(8), "for" 0 < x < 4),(0, "otherwise."):}`
Find P(1 < X < 2),
The following is the p.d.f. of a r.v. X.
f(x) = `{(x/(8), "for" 0 < x < 4),(0, "otherwise."):}`
Find P(X > 2)
Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.
f(x) = `{(0.5x, "for" 0 ≤ x ≤ 2),(0, "otherwise".):}`
Calculate : P(X ≤ 1)
Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.
f(x) = `{(0.5x, "for" 0 ≤ x ≤ 2),(0, "otherwise".):}`
Calculate : P(0.5 ≤ X ≤ 1.5)
Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.
f(x) = `{(0.5x, "for" 0 ≤ x ≤ 2),(0, "otherwise".):}`
Calculate : P(X ≥ 1.5)
Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by
f(x) = `{(1/5, "for" 0 ≤ x ≤ 5),(0, "otherwise"):}`
Find the probability that waiting time is between 1 and 3 minutes.
Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by
f(x) = `{(1/5, "for" 0 ≤ x ≤ 5),(0, "otherwise".):}`
Find the probability that waiting time is more than 4 minutes.
Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(–1 < X < 1)
Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(X < – 0.5 or X > 0.5)
Following is the p. d. f. of a continuous r.v. X.
f(x) = `{(x/8, "for" 0 < x < 4),(0, "otherwise".):}`
Find expression for the c.d.f. of X.
Following is the p. d. f. of a continuous r.v. X.
f(x) = `{(x/8, "for" 0 < x < 4),(0, "otherwise".):}`
Find F(x) at x = 0.5, 1.7 and 5.
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < 1)
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < –2)
If a r.v. X has p.d.f f(x) = `{("c"/x"," 1 < x < 3"," "c" > 0),(0"," "otherwise"):}`
Find c, E(X), and Var(X). Also Find F(x).
Choose the correct alternative :
Given p.d.f. of a continuous r.v.X as f(x) = `x^2/(3)` for –1 < x < 2 = 0 otherwise then F(1) = _______.
State whether the following is True or False :
If f(x) = k x (1 – x) for 0 < x < 1 = 0 otherwise k = 12
State whether the following is True or False :
If X ~ B(n,p) and n = 6 and P(X = 4) = P(X = 2) then p = `(1)/(2)`
Solve the following problem :
Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(X > 0)
Solve the following problem :
Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(–1 < X < 1)
State whether the following statement is True or False:
If f(x) = `{:("k"x (1 - x)",", "for" 0 < x < 1),(= 0",", "otherwise"):}`
is the p.d.f. of a r.v. X, then k = 12
If r.v. X assumes the values 1, 2, 3, …….., 9 with equal probabilities, then E(X) = 5
Find k, if the following function is p.d.f. of r.v.X:
f(x) = `{:(kx^2(1 - x)",", "for" 0 < x < 1),(0",", "otherwise"):}`
If the p.d.f. of X is
f(x) = `x^2/18, - 3 < x < 3`
= 0, otherwise
Then P(X < 1) is ______.
Find the c.d.f. F(x) associated with the following p.d.f. f(x)
f(x) = `{{:(3(1 - 2x^2)",", 0 < x < 1),(0",", "otherwise"):}`
Find `P(1/4 < x < 1/3)` by using p.d.f. and c.d.f.