मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

If a r.v. X has p.d.f f(x) = {cx, 1<x<3,c>00, otherwise Find c, E(X), and Var(X). Also Find F(x). - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If a r.v. X has p.d.f f(x) = `{("c"/x","  1 < x < 3"," "c" > 0),(0","  "otherwise"):}` 
Find c, E(X), and Var(X). Also Find F(x).

बेरीज

उत्तर

a. Given that f(x) represents p.d.f. of r.v. X

∴ `int_1^3 f(x)*"d"x` = 1

∴ `int_1^3 "c"/x*"d"x` = 1

∴ `"c" int_1^3 (1)/x*"d"x` = 1

∴ `"c"[logx]_1^3` = 1

∴ c [log 3 – log 1] = 1

∴ c [log 3 – 0] = 1

∴ c = `(1)/log3`

b. E(X) = `int_(-oo)^(oo) xf(x)`

= `int_1^3 xf(x)*"d"x`

= `int_1^3 x "c"/x*"d"x`

= `"c" int_1^3 1*"d"x`

= `(1)/log3 [x]_1^3`

= `(1)/log3[3 - 1]`

= `(2)/log3`.

c. E(X2) = `int_(-oo)^(oo) x^2f(x)`

= `int_1^3 x^2f(x)*"d"x`

= `-int_1^3 x^2. "c"/x*"d"x`

= `"c" int_1^3x*"d"x`

= `(1)/(2log3)[x^2]_1^3`

= `(1)/(2log3) [9 - 1]`

= `8/(2log3)`

= `(4)/(log3)`

∴ Var(X) = E(X2) – [E(x)]2

= `(4)/log3 -(2/log3)^2`

= `(4)/((log3)) -  4/(log3)^2`

= `(4log3 - 4)/(log3)^2`

= `(4(log3 - 1))/(log3)^2`

F(x) = `int_1^x f(x)*"d"x`

= `int_1^x "c"/x*"d"x`

= `"c" int_1^x (1)/x*"d"x`

= `"c"[logx]_1^x`

= c[log x – log 1]

= c log x

= `log x/log 3`

shaalaa.com
Probability Distribution of a Continuous Random Variable
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Probability Distributions - Exercise 8.2 [पृष्ठ १४५]

संबंधित प्रश्‍न

Verify which of the following is p.d.f. of r.v. X:

 f(x) = sin x, for 0 ≤ x ≤ `π/2`


Verify which of the following is p.d.f. of r.v. X:

 f(x) = 2, for 0 ≤ x ≤ 1.


Solve the following :

The following probability distribution of r.v. X

X=x -3 -2 -1 0 1 2 3
P(X=x) 0.05 0.10 0.15 0.20 0.25 0.15 0.1

Find the probability that

X is non-negative


The following is the p.d.f. of a r.v. X.

f(x) = `{(x/(8),  "for"  0 < x < 4),(0,  "otherwise."):}`

Find P(X > 2)


Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.

f(x) = `{(0.5x,  "for" 0 ≤ x ≤ 2),(0,  "otherwise".):}`
Calculate : P(X ≤ 1)


Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.

f(x) = `{(0.5x, "for" 0 ≤ x ≤ 2),(0, "otherwise".):}`
Calculate : P(0.5 ≤ X ≤ 1.5)


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8),  0 < x < 2),(0,   "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < 1)


The p.d.f. of a continuous r.v. X is

f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < –2)


State whether the following is True or False :

If f(x) = k x (1 – x) for 0 < x < 1 = 0 otherwise k = 12


Solve the following problem :

Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(X > 0)


Solve the following problem :

Suppose error involved in making a certain measurement is a continuous r.v.X with p.d.f.

f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
Compute P(X < – 0.5 or X > 0.5)


Solve the following problem :

The p.d.f. of the r.v. X is given by

f(x) = `{((1)/(2"a")",", "for"  0 <  x= 2"a".),(0, "otherwise".):}`
Show that `"P"("X" < "a"/2) = "P"("X" > (3"a")/2)`


Solve the following problem :

Let X denote the reaction temperature in Celsius of a certain chemical process. Let X have the p. d. f.

f(x) = `{((1)/(10),  "for" -5 ≤ x < 5),(0, "otherwise".):}`
Compute P(X < 0).


If r.v. X assumes the values 1, 2, 3, …….., 9 with equal probabilities, then E(X) = 5


State whether the following statement is True or False:

The cumulative distribution function (c.d.f.) of a continuous random variable X is denoted by F and defined by

F(x) = `{:(0",",  "for all"  x ≤ "a"),( int_"a"^x  f(x) "d"x",",  "for all"  x ≥ "a"):}`


If the p.d.f. of X is

f(x) = `x^2/18,   - 3 < x < 3`

      = 0,        otherwise

Then P(X < 1) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×