Advertisements
Advertisements
प्रश्न
Solve the following problem :
Let X denote the reaction temperature in Celsius of a certain chemical process. Let X have the p. d. f.
f(x) = `{((1)/(10), "for" -5 ≤ x < 5),(0, "otherwise".):}`
Compute P(X < 0).
उत्तर
P(X < 0) = `int_(-5)^0 f(x)*dx`
= `(1)/(10) int_(-5)^0 1*dx`
= `(1)/(10)[x]_(-5)^0`
= `(1)/(10)(0 + 5)`
= `(1)/(2)`.
APPEARS IN
संबंधित प्रश्न
It is known that error in measurement of reaction temperature (in 0° c) in a certain experiment is continuous r.v. given by
f (x) = `x^2/ 3` , for –1 < x < 2 and = 0 otherwise
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is non-negative
Solve the following :
The following probability distribution of r.v. X
X=x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
P(X=x) | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that
X is even
Check whether the following is a p.d.f.
f(x) = `{(x, "for" 0 ≤ x ≤ 1),(2 - x, "for" 1 < x ≤ 2.):}`
Check whether the following is a p.d.f.
f(x) = 2 for 0 < x < q.
Let X be the amount of time for which a book is taken out of library by a randomly selected student and suppose that X has p.d.f.
f(x) = `{(0.5x, "for" 0 ≤ x ≤ 2),(0, "otherwise".):}`
Calculate : P(X ≥ 1.5)
Suppose X is the waiting time (in minutes) for a bus and its p. d. f. is given by
f(x) = `{(1/5, "for" 0 ≤ x ≤ 5),(0, "otherwise"):}`
Find the probability that waiting time is between 1 and 3 minutes.
Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(X > 0)
Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(–1 < X < 1)
Suppose error involved in making a certain measurement is a continuous r. v. X with p.d.f.
f(x) = `{("k"(4 - x^2), "for" -2 ≤ x ≤ 2),(0, "otherwise".):}`
compute P(X < – 0.5 or X > 0.5)
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X < 1)
The p.d.f. of a continuous r.v. X is
f(x) = `{((3x^2)/(8), 0 < x < 2),(0, "otherwise".):}`
Determine the c.d.f. of X and hence find P(X > 0)
Fill in the blank :
If x is continuous r.v. and F(xi) = P(X ≤ xi) = `int_(-oo)^(oo) f(x)*dx` then F(x) is called _______
State whether the following is True or False :
If f(x) = k x (1 – x) for 0 < x < 1 = 0 otherwise k = 12
Solve the following problem :
Determine k if the p.d.f. of the r.v. is
f(x) = `{("ke"^(-thetax), "for" 0 ≤ x < oo),(0, "otherwise".):}`
Find `"P"("X" > 1/theta)` and determine M is P(0 < X < M) = `(1)/(2)`
State whether the following statement is True or False:
The cumulative distribution function (c.d.f.) of a continuous random variable X is denoted by F and defined by
F(x) = `{:(0",", "for all" x ≤ "a"),( int_"a"^x f(x) "d"x",", "for all" x ≥ "a"):}`
Find the c.d.f. F(x) associated with the following p.d.f. f(x)
f(x) = `{{:(3(1 - 2x^2)",", 0 < x < 1),(0",", "otherwise"):}`
Find `P(1/4 < x < 1/3)` by using p.d.f. and c.d.f.