Advertisements
Advertisements
प्रश्न
Solve the quadratic equation 7x2 + 9x + 2 = 0 by the quadratic formula.
उत्तर
The given equation is 7x2 + 9x + 2 = 0
On comparing the given quadratic equation with ax2 + bx + c = 0, we get
a = 7, b = 9, c = 2
Now, using the quadratic formula,
x = `(-b +- sqrt(b^2 - 4ac))/(2a)`
⇒ x = `(-9 +- sqrt((9)^2 - 4(7)(2)))/(2(7))`
= `(-9 +- sqrt(81 - 56))/14`
= `(-9 +- sqrt(25))/14`
⇒ x = `(-9 + sqrt(25))/14` or x = `(-9 - sqrt(25))/14`
⇒ x = `(-9 + 5)/4` or x = `(-9 - 5)/14`
⇒ x = `(-4)/14` or x = `(-14)/14`
⇒ x = `(-2)/7` or x = – 1.
As a result, the two roots of the above quadratic equation are `- 2/7` and – 1.
APPEARS IN
संबंधित प्रश्न
Solve the quadratic equation 2x2 + 5x + 2= 0 using formula method.
Complete the following activity to solve the given quadratic equation by formula method.
2x2 + 13x + 15 = 0
Activity: 2x2 + 13x + 15 = 0
a = (______), b = 13, c = 15
b2 – 4ac = (13)2 – 4 × 2 × (______)
= 169 – 120
b2 – 4ac = 49
x = `(-"b" +- sqrt("b"^2 - 4"ac"))/(2"a")`
x = `(- ("______") +- sqrt(49))/4`
x = `(-13 +- ("______"))/4`
x = `(-6)/4` or x = `(-20)/4`
x = (______) or x = (______)
If `(5sqrt(2) + 3sqrt(3)) - (6sqrt(2) - 7sqrt(3)) = asqrt(2) + bsqrt(3)`, then find a and b.
Solve: 7x2 – 30x – 25 = 0
Solve the quadratic equation: 16x2 + 24x + 9 = 0.
Solve the following quadratic equation by the formula method:
x2 + 10x + 2 = 0
Solve the following quadratic equation by formula method:
3m2 − m − 10 = 0