मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Solve using formula. x2 + 6x + 5 = 0 - Algebra

Advertisements
Advertisements

प्रश्न

Solve using formula.

x2 + 6x + 5 = 0

बेरीज

उत्तर

x2 + 6x + 5 = 0
On comparing with the equation  

\[a x^2 + bx + c = 0\] 

a = 1, b = 6 and c = 5
Now 

= b2 - 4ac

= 62 - 4 × 1 × 5

= 36 - 20

= 16

\[x = \frac{- b \pm \sqrt{b^2 - 4ac}}{2a}\] 

\[x = \frac{- 6 \pm \sqrt{16}}{2 \times 1} = \frac{- 6 \pm 4}{2}\]

\[ \Rightarrow x = \frac{- 6 + 4}{2} \text{ or } x = \frac{- 6 - 4}{2}\]

x = `(-2)/2`  or  x = `(-10)/2`

\[ \Rightarrow x = - 1 \text{ or } x = - 5\]

∴ -1 and -5 are roots of the given quadratic equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Quadratic Equations - Practice Set 2.4 [पृष्ठ ४३]

APPEARS IN

बालभारती Algebra (Mathematics 1) [English] 10 Standard SSC Maharashtra State Board
पाठ 2 Quadratic Equations
Practice Set 2.4 | Q 2.1 | पृष्ठ ४३

संबंधित प्रश्‍न

Compare the given quadratic equation to the general form and write values of a, b, c.

x2 – 7x + 5 = 0


Compare the given quadratic equation to the general form and write values of a,b, c.

2m2 = 5m – 5


Solve using formula.

3m2 + 2m – 7 = 0


Solve using formula.

5m2 – 4m – 2 = 0


Solve using formula.

5x2 + 13x + 8 = 0


With the help of the flow chart given below solve the equation \[x^2 + 2\sqrt{3}x + 3 = 0\] using the formula.


The roots of the following quadratic equation is real and equal, find k.

 kx (x – 2) + 6 = 0


Find the value of discriminant of the following equation.

\[\sqrt{5} x^2 - x - \sqrt{5} = 0\]


Two roots of quadratic equation is given ; frame the equation.

 10 and –10


Two roots of quadratic equation is given ; frame the equation.

 0 and 7


Determine the nature of root of the quadratic equation.

\[3 x^2 - 5x + 7 = 0\]


Determine the nature of root of the quadratic equation.

\[\sqrt{3} x^2 + \sqrt{2}x - 2\sqrt{3} = 0\]


Determine the nature of root of the quadratic equation.

m2 - 2m + 1 = 0


The difference between squares of two numbers is 120. The square of smaller number is twice the greater number. Find the numbers. 


If 2 and 5 are the roots of the quadratic equation, then complete the following activity to form quadratic equation:

Activity:

Let α = 2 and β = 5 are the roots of the quadratic equation.

Then quadratic equation is:

x2 − (α + β)x + αβ = 0

∴ `x^2 - (2 + square)x + square xx 5 = 0`

∴ `x^2 - square x + square = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×