Advertisements
Advertisements
प्रश्न
Solve for x :
x2 + 5x − (a2 + a − 6) = 0
उत्तर
\[Here, a = 1, b = 5, c = - \left( a^2 + a - 6 \right)\]
\[Now, \]
\[D = \left( 5 \right)^2 - 4 \times 1 \times \left[ - \left( a^2 + a - 6 \right) \right]\]
\[ = 25 + 4 a^2 + 4a - 24\]
\[ = 4 a^2 + 4a + 1\]
\[ = \left( 2a + 1 \right)^2\]
\[\therefore x = \frac{- 5 \pm \sqrt{\left( 2a + 1 \right)^2}}{2} \left( x = \frac{- b \pm \sqrt{D}}{2a} \right)\]
\[ = \frac{- 5 + 2a + 1}{2}, \frac{- 5 - 2a - 1}{2}\]
\[ = \frac{2a - 4}{2}, \frac{- 2a - 6}{2}\]
\[ = a - 2, - a - 3\]
APPEARS IN
संबंधित प्रश्न
Find the nature of the roots of the following quadratic equation. If the real roots exist, find them:
2x2 - 3x + 5 = 0
If ad ≠ bc, then prove that the equation (a2 + b2) x2 + 2 (ac + bd) x + (c2 + d2) = 0 has no real roots.
Form the quadratic equation whose roots are:
`2 + sqrt(5) and 2 - sqrt(5)`.
Find the discriminant of the following equations and hence find the nature of roots: 16x2 - 40x + 25 = 0
A quadratic equation with integral coefficient has integral roots. Justify your answer.
Find whether the following equation have real roots. If real roots exist, find them.
5x2 – 2x – 10 = 0
State whether the following quadratic equation have two distinct real roots. Justify your answer.
(x + 1)(x – 2) + x = 0
Find the roots of the quadratic equation by using the quadratic formula in the following:
`x^2 + 2sqrt(2)x - 6 = 0`
Find the value of 'k' so that the quadratic equation 3x2 – 5x – 2k = 0 has real and equal roots.
Complete the following activity to determine the nature of the roots of the quadratic equation x2 + 2x – 9 = 0 :
Solution :
Compare x2 + 2x – 9 = 0 with ax2 + bx + c = 0
a = 1, b = 2, c = `square`
∴ b2 – 4ac = (2)2 – 4 × `square` × `square`
Δ = 4 + `square` = 40
∴ b2 – 4ac > 0
∴ The roots of the equation are real and unequal.