Advertisements
Advertisements
प्रश्न
सर्वसमिका a2 − 2ab + b2 = (a − b)2 का प्रयोग करते हुए निम्न के गुणनखंड कीजिए -
p2y2 – 2py + 1
उत्तर
हमारे पास है,
p2y2 – 2py + 1 = (py)2 – 2 · py · 1 + 12
= (py – 1)2
= (py – 1)(py – 1)
APPEARS IN
संबंधित प्रश्न
उपयुक्त सर्वसमिकाओं का प्रयोग करते हुए, निम्न को प्रसारित कीजिए -
`(2/3x - 3/2y)^2`
उपयुक्त सर्वसमिकाओं का प्रयोग करते हुए, निम्न को प्रसारित कीजिए -
सर्वसमिका a2 − 2ab + b2 = (a − b)2 का प्रयोग करते हुए निम्न के गुणनखंड कीजिए -
x2 – 8x + 16
सर्वसमिका a2 − 2ab + b2 = (a − b)2 का प्रयोग करते हुए निम्न के गुणनखंड कीजिए -
a2y2 – 2aby + b2
सर्वसमिका a2 − 2ab + b2 = (a − b)2 का प्रयोग करते हुए निम्न के गुणनखंड कीजिए -
9x2 – 12x + 4
सर्वसमिका a2 − 2ab + b2 = (a − b)2 का प्रयोग करते हुए निम्न के गुणनखंड कीजिए -
`x^2/4 - 2x + 4`
सर्वसमिका a2 − 2ab + b2 = (a − b)2 का प्रयोग करते हुए निम्न के गुणनखंड कीजिए -
a2y3 – 2aby2 + b2y
यदि m – n = 16 और m2 + n2 = 400 है, तो mn ज्ञात कीजिए।
निम्नांकित प्रश्न का सत्यापन कीजिए -
`((3p)/7 + 7/(6p))^2 - (3/7p + 7/(6p))^2 = 2`
मान ज्ञात कीजिए -
`(198 xx 198 - 102 xx 102)/96`