Advertisements
Advertisements
प्रश्न
State which of the following is the statement. Justify. In case of a statement, state its truth value.
The sum of cube roots of unity is zero.
उत्तर
It is a statement which is true, hence its truth value is ‘T’.
APPEARS IN
संबंधित प्रश्न
If p ˄ q = F, p → q = F, then the truth value of p and q is ______.
Write truth values of the following statements: ∃ n ∈ N such that n + 5 > 10.
Write the following statement in symbolic form and find its truth value:
∀ n ∈ N, n2 + n is an even number and n2 - n is an odd number.
Using truth tables, examine whether the statement pattern (p ∧ q) ∨ (p ∧ r) is a tautology, contradiction or contingency.
State which of the following is the statement. Justify. In case of a statement, state its truth value.
Zero is a complex number.
State which of the following is the statement. Justify. In case of a statement, state its truth value.
Congruent triangles are similar.
State which of the following is the statement. Justify. In case of a statement, state its truth value.
Do you like Mathematics?
State which of the following is the statement. Justify. In case of a statement, state its truth value.
All real numbers are whole numbers.
Write the truth values of the following.
24 is a composite number or 17 is a prime number.
If the statement p, q are true statement and r, s are false statement then determine the truth value of the following:
p ∨ (q ∧ r)
If the statement p, q are true statement and r, s are false statement then determine the truth value of the following:
(p → q) ∧ ∼ r
If the statement p, q are true statement and r, s are false statement then determine the truth value of the following:
[(∼ p ∧ q) ∧ ∼ r] ∨ [(q → p) → (∼ s ∨ r)]
If A = {3, 5, 7, 9, 11, 12}, determine the truth value of the following.
∃ x ∈ A such that x2 < 0
If A = {3, 5, 7, 9, 11, 12}, determine the truth value of the following.
∀ x ∈ A, 2x + 9 > 14
If A = {1, 2, 3, 4, 5} then which of the following is not true?
Which of the following sentence is the statement in logic? Justify. Write down the truth value of the statement:
Please get me a glass of water.
`sqrt5` is an irrational but `3sqrt5` is a complex number.
Write the truth value of the following statement:
∀ n ∈ N, n2 + n is even number while n2 – n is an odd number.
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
A triangle has ‘n’ sides.
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
Please grant me a loan.
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
`sqrt(-4)` is an irrational number.
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
Have a cup of cappuccino.
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
(x + y)2 = x2 + 2xy + y2 for all x, y ∈ R.
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
Every real number is a complex number.
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
1 ! = 0
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
3 + 5 > 11
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
The number π is an irrational number.
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
x2 - y2 = (x + y)(x - y) for all x, y ∈ R.
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
Two co-planar lines are either parallel or intersecting.
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
The number of arrangements of 7 girls in a row for a photograph is 7!.
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
Give me a compass box.
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
Bring the motor car here.
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
Can you speak in English?
Which of the following is not a statement?
Choose the correct alternative :
Which of the following is an open statement?
Choose the correct alternative :
For the following three statements
p : 2 is an even number.
q : 2 is a prime number.
r : Sum of two prime numbers is always even.
Then, the symbolic statement (p ∧ q) → ∼ r means.
Choose the correct alternative :
The statement (∼ p ∧ q) ∨∼ q is
Choose the correct alternative :
If p is the sentence ‘This statement is false’ then
Choose the correct alternative :
Conditional p → q is equivalent to
If p ∨ q is true then truth value of ∼ p ∨ ∼ q is ______.
Fill in the blanks :
p ↔ q is false when p and q have ––––––––– truth values.
State whether the following statement is True or False :
Truth value of 2 + 3 < 6 is F.
State whether the following statement is True or False :
There are 24 months in year is a statement.
State whether the following statement is True or False :
p ∧ t = p.
Solve the following :
State which of the following sentences are statements in logic.
Ice cream Sundaes are my favourite.
Solve the following :
State which of the following sentences are statements in logic.
x + 3 = 8 ; x is variable.
Solve the following :
State which of the following sentences are statements in logic.
(a + b)2 = a2 + 2ab + b2 for all a, b ∈ R.
Solve the following :
State which of the following sentences are statements in logic.
Why are you sad?
Solve the following :
State which of the following sentences are statements in logic.
The square of any odd number is even.
Solve the following :
State which of the following sentences are statements in logic.
Do not come inside the room.
Which of the following sentence is a statement? In case of a statement, write down the truth value.
The square of every real number is positive.
Which of the following sentence is a statement? In case of a statement, write down the truth value.
Every parallelogram is a rhombus.
Which of the following sentence is a statement? In case of a statement, write down the truth value.
Please carry out my instruction.
Determine the truth value of the following statement.
4 + 5 = 7 or 9 − 2 = 5
If p, q, r are statements with truth values T, T, F respectively determine the truth values of the following.
∼ [(p → q) ↔ (p ∧ ∼ q)]
If A = {2, 3, 4, 5, 6, 7, 8}, determine the truth value of the following statement.
∃ x ∈ A, such that x + 3 < 11.
If A = {2, 3, 4, 5, 6, 7, 8}, determine the truth value of the following statement.
∀ x ∈ A, x2 + 2 ≥ 5.
If p is any statement then ( p ˅ ∼ p) is a
State the truth value of (p ˄ ∼p)
Choose the correct alternative :
Which of the following is not a statement?
The dual of the statement (p ˅ q) ˄ (r ˅ s) is ______.
State whether the following statement is True or False:
Truth value of `sqrt(3)` is not an irrational number is F
State whether the following statement is True or False:
p ˅ ~ p ≡ ~ c
The truth value of the statement “Neither 27 is a prime number nor divisible by 4” is ______
Using truth table prove that ~ p ˄ q ≡ ( p ˅ q) ˄ ~ p
Without using truth table show that
(p ∨ q) ∧ (~ p ∨ ~ q) ≡ (p ∧ ~ q) ∨ ( ~ p ∧ q)
Given following statements
p: 9 × 5 = 45
q: Pune is in Maharashtra
r: 3 is the smallest prime number
Write truth values by activity
i) (p ˄ q) ˄ r = `(square` ˄ `square)` ˄ `square` = `square` ˄ `square` = `square` ii) ~ ( p ˄ r ) = `~(square` ˄ `square)` = `~ square` = `square` iii) p → q = `square → square` = `square` |
Which of the following quantified statement is true?
Let a: ~ (p ∧ ~ r) v (~ q v s) and
b: (p v s) ↔ (q ∧ r).
If the truth values of p and q are true and that of rands are false, then the truth values of a and bare respectively.
Consider the following two statements.
Statement p:
The value of sin 120° can be divided by taking θ = 240° in the equation 2 sin `θ/2` = `sqrt(1 + sin θ) - sqrt(1 - sinθ)`.
Statement q:
The angles A, B, C and D of any quadrilateral ABCD satisfy the equation `cos(1/2(A + C)) + cos(1/2(B + D))` = 0
Then the truth values of p and q are respectively.