Advertisements
Advertisements
प्रश्न
The ages of two sisters are 11 years and 14 years. In how many years’ time will the product of their ages be 304?
उत्तर
The ages of two sisters are 11 years and 14 years.
Let in x number of years the product of their ages be 304.
∴ (11 + x)(14 + x) = 304
154 + 11x + 14x + x2 = 304
x2 + 25x – 150 = 0
(x + 30)(x – 5) = 0
x = −30, 5
But, the number of years cannot be negative.
So, x = 5.
Hence, the required number of years is 5 years.
APPEARS IN
संबंधित प्रश्न
A stone is thrown vertically downwards and the formula d = 16t2 + 4t gives the distance, d metres, that it falls in t seconds. How long does it take to fall 420 metres?
One year ago, a man was 8 times as old as his son. Now his age is equal to the square of his son’s age. Find their present ages.
The age of a father is twice the square of the age of his son. Eight years hence, the age of the father will be 4 years more than three times the age of the son. Find their present ages.
Rs. 250 is divided equally among a certain number of children. If there were 25 children more, each would have received 50 paise less. Find the number of children.
An employer finds that if he increases the weekly wages of each worker by Rs. 5 and employs five workers less, he increases his weekly wage bill from Rs. 3,150 to Rs. 3,250. Taking the original weekly wage of each worker as Rs. x; obtain an equation in x and then solve it to find the weekly wages of each worker.
A trader bought a number of articles for Rs. 1,200. Ten were damaged and he sold each of the remaining articles at Rs. 2 more than what he paid for it, thus getting a profit of Rs. 60 on the whole transaction. Taking the number of articles he bought as x, form an equation in x and solve it.
A hotel bill for a number of people for overnight stay is Rs. 4800. If there were 4 people more, the bill each person had to pay, would have reduced by Rs. 200. Find the number of people staying overnight.
Rs. 6500 was divided equally among a certain number of persons. Had there been 15 persons more, each would have got Rs. 30 less. Find the original number of persons.
In an auditorium, seats were arranged in rows and columns. The number of rows was equal to the number of seats in each row. When the number of rows was doubled and the number of seats in each row was reduced by 10, the total number of seats increased by 300. Find:
- the number of rows in the original arrangement.
- the number of seats in the auditorium after re-arrangement.
In a certain positive fraction, the denominator is greater than the numerator by 3. If 1 is subtracted from the numerator and the denominator both, the fraction reduces by `1/14`. Find the fraction.