Advertisements
Advertisements
प्रश्न
The cross-section of a tunnel is a square of side 7 m surmounted by a semi-circle as shown in the adjoining figure. The tunnel is 80 m long.
Calculate:
- its volume,
- the surface area of the tunnel (excluding the floor) and
- its floor area.
उत्तर
Side of square = 7 m
Radius of semicircle = `7/2` m
Length of the tunnel = 80 m
Area of cross-section of the front part = `a^2 + 1/2pir^2`
= `7 xx 7 + 1/2 xx 22/7 xx 7/2 xx 7/2`
= `49 + 77/4 m^2`
= `(196 + 77)/4`
= `273/4 m^2`
i. Therefore, volume of tunnel = area × length
= `273/4 xx 80`
= 5460 m3
ii. Circumference of the front of tunnel
= `2 xx 7 + 1/2 xx 2pir`
= `14 + 22/7 xx 7/2`
= 14 + 11
= 25 m
Therefore, surface area of the inner part of the tunnel
= 25 × 80
= 2000 m2
iii. Area of floor = l × b
= 7 × 80
= 560 m2
APPEARS IN
संबंधित प्रश्न
Find the surface area of a sphere of radius 5.6 cm.
`["Assume "pi=22/7]`
Find the surface area of a sphere of radius 14 cm.
`["Assume "pi=22/7]`
A hemispherical bowl is made of steel, 0.25 cm thick. The inner radius of the bowl is 5 cm. Find the outer curved surface area of the bowl.
`["Assume "pi = 22/7]`
Find the surface area of a sphere of radius 14 cm.
Find the surface area of a sphere of diameter 14 cm .
Find the surface area of a sphere of diameter 21 cm .
A spherical ball of lead has been melted and made into identical smaller balls with radius equal to half the radius of the original one. How many such balls can be made?
The volume of one sphere is 27 times that of another sphere. Calculate the ratio of their :
- radii,
- surface areas.
If the number of square centimeters on the surface of a sphere is equal to the number of cubic centimeters in its volume, what is the diameter of the sphere?
A solid rectangular block of metal 49 cm by 44 cm by 18 cm is melted and formed into a solid sphere. Calculate the radius of the sphere.
The total area of a solid metallic sphere is 1256 cm2. It is melted and recast into solid right circular cones of radius 2.5 cm and height 8 cm. Calculate :
- the radius of the solid sphere.
- the number of cones recast. [Take π = 3.14]
How many spherical bullets can be made out of a solid cube of lead whose edge measures 44 cm, each bullet being 4 cm in diameter?
The total surface area of a hemisphere of radius r is
A cylindrical rod whose height is 8 times of its radius is melted and recast into spherical balls of same radius. The number of balls will be
If the surface area of a sphere is 144π m2, then its volume (in m3) is
A cone, a hemisphere and a cylinder stand on equal bases and have the same height. The ratio of their volumes is
Find the surface area and volume of sphere of the following radius. (π = 3.14 )
9 cm
A sphere cut out from a side of 7 cm cubes. Find the volume of this sphere?
How many spherical bullets can be made out of a solid cube of lead whose edge measures 44 cm, each bullet being 4 cm in diameter?
The surface area of a solid metallic sphere is 616 cm2. It is melted and recast into smaller spheres of diameter 3.5 cm. How many such spheres can be obtained?