मराठी

The Diagonals of a Parallelogram Abcd Intersect at O. If ∠Boc = 90° and ∠Bdc = 50°, Then ∠Oab = - Mathematics

Advertisements
Advertisements

प्रश्न

The diagonals of a parallelogram ABCD intersect at O. If ∠BOC = 90° and ∠BDC = 50°, then ∠OAB =

पर्याय

  • 40°

  • 50°

  • 10°

  • 90°

MCQ

उत्तर

ABCD is a parallelogram with diagonals AC and BD intersect at O.

It is given that ∠BOC = 90° and∠BDC = 50°.

We need to find ∠OAB

Now,

∠BOC +∠COD = 180° (Linear pair)

90° + ∠COD = 180

         ∠COD = 90°

Since, O lies on BD.

Therefore,

∠ODC = ∠BDC

∠ODC = 50°

By angle sum property of a triangle, we get:

∠ODC + ∠COD + ∠OCD = 180°

          50° + 90° + ∠OCD = 180°

                  140° + ∠OCD = 180°

                              ∠OCD = 40°

Since, O lies on AC.

Therefore,

∠ACD = ∠OCD

∠ACD = 40°

Also, DC  || AB 

Therefore,

∠PAB = ∠ACD

∠OAB = 40°

Hence the correct choice is (a).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Quadrilaterals - Exercise 13.6 [पृष्ठ ७२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 13 Quadrilaterals
Exercise 13.6 | Q 25 | पृष्ठ ७२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×