मराठी

The Difference Between C.I. Payable Annually and S.I. on Rs.50,000 for Two Years is Rs.125 at the Same Rate of Interest per Annum. Find the Rate of Interest. - Mathematics

Advertisements
Advertisements

प्रश्न

The difference between C.I. payable annually and S.I. on Rs.50,000 for two years is Rs.125 at the same rate of interest per annum. Find the rate of interest.

बेरीज

उत्तर

Let the rate of interest per year be r%.

S.I. in 2 years = Rs.`(50000 xx "r" xx 2)/(100)`

= Rs.1000r

And, C.I. in 2 years 
= A - P

= Rs.`50000(1 + "r"/100)^2` - Rs.50000

Given, C.I. - S.I. = Rs.125

⇒ `50000(1 + "r"/100)^2 - 50000 - 1000"r"` = 125

⇒ `50000(1 + "r"^2/10000 + (2"r")/100) - 50000 - 1000"r"` = 125

⇒ 50000 + 5r2 + 1000r - 50000 - 1000r = 125
⇒  5r2 = 25
⇒  r2 = 25
⇒  r = ±5
But the rater of interest cannot ne negative.
∴ Rate of interest is 5%.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Compound Interest - Exercise 3.2

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 3 Compound Interest
Exercise 3.2 | Q 13

संबंधित प्रश्‍न

Calculate the amount and compound interest on  Rs 18000 for `2 1/2` years at 10% per annum compounded annually.

 


Find the difference between the compound interest and simple interest. On a sum of Rs 50,000 at 10% per annum for 2 years.


Find the compound interest at the rate of 5% for three years on that principal which in three years at the rate of 5% per annum gives Rs 12000 as simple interest.


Rachana borrowed a certain sum at the rate of 15% per annum. If she paid at the end of two years Rs 1290 as interest compounded annually, find the sum she borrowed.


The difference between the S.I. and C.I. on a certain sum of money for 2 years at 4% per annum is Rs 20. Find the sum.


The present population of a town is 28000. If it increases at the rate of 5% per annum, what will be its population after 2 years?


A certain sum amounts to Rs. 5,292 in two years and Rs. 5,556.60 in three years, interest being compounded annually. Find : the rate of interest.


Geeta borrowed Rs. 15,000 for 18 months at a certain rate of interest compounded semi-annually. If at the end of six months it amounted to Rs. 15,600; calculate :
(i) the rate of interest per annum.
(ii) the total amount of money that Geeta must pay at the end of 18 months in order to clear the account.


The cost of a machine depreciated by Rs. 4,000 during the first year and by Rs. 3,600 during the second year. Calculate :

  1. The rate of depreciation.
  2. The original cost of the machine.
  3. Its cost at the end of the third year.

A man borrows Rs.10,000 at 10% compound interest compounded yearly. At the end of each year, he pays back 30% of the sum borrowed. How much money is left unpaid just after the second year ?


A man borrows Rs.10,000 at 10% compound interest compounded yearly. At the end of each year, he pays back 20% of the amount for that year. How much money is left unpaid just after the second year ?


The value of a machine depreciated by 10% per year during the first two years and 15% per year during the third year. Express the total depreciation of the machine, as percent, during the three years.


During every financial year, the value of a machine depreciates by 12%. Find the original cost of a machine which depreciates by Rs. 2,640 during the second financial year of its purchase.


A man borrowed Rs. 20,000 for 2 years at 8% per year compound interest. Calculate :
(i) the interest of the first year.
(ii) the interest of the second year.
(iii) the final amount at the end of the second year.
(iv) the compound interest of two years.


Rekha borrowed Rs. 40,000 for 3 years at 10% per annum compound interest. Calculate the interest paid by her for the second year.


Rohit borrowed ₹ 40,000 for 2 years at 10% per annum C.I. and Manish borrowed the same sum for the same time at 10.5% per annum simple interest. Which of these two gets less interest and by how much?


A certain sum of money invested for 5 years at 8% p.a. simple interest earns an interest of ₹ 12,000. Find:
(i) the sum of money.
(ii) the compound interest earned by this money in two years and at 10% p.a. compound interest.


The compound interest on ₹ 8000 at 10% p.a for 1 year, compounded half yearly is ____________


The annual rate of growth in population of a town is 10%. If its present population is 26620, then the population 3 years ago was _________


Depreciation value is calculated by the formula, `"P"(1 - "r"/100)^"n"`


The time taken for ₹ 1000 to become ₹ 1331 at 20% p.a, compounded annually is 3 years


The compound interest on ₹ 16000 for 9 months at 20% p.a, compounded quarterly is ₹ 2522


In how many years will ₹ 3375 become ₹ 4096 at `13 1/3` p.a if the interest is compounded half-yearly?


Find the C.I. on ₹ 15000 for 3 years if the rates of interest are 15%, 20% and 25% for the I, II and III years respectively


The cost of a machine is ₹ 18000 and it depreciates at `16 2/3 %` annually. Its value after 2 years will be ___________


Compound interest is the interest calculated on the previous year’s amount.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×