Advertisements
Advertisements
प्रश्न
The equilibrium constant Kp for the reaction \[\ce{N2 (g) + 3H2 (g) <=> 2NH3 (g)}\] is 8.19 × 102 at 298 K and 4.6 × 10-1 at 498 K. Calculate ∆H° for the reaction.
उत्तर
Kp1 = 8.19 × 102;
T1 = 298 K
Kp1 = 8.19 × 102;
T1 = 298 K
Kp2 = 4.16 × 10-1;
T2 = 498 K
`log (("K"_("P"_2))/("K"_("P"_1))) = (Delta "H"^0)/(2.303 "R") [("T"_2 - "T"_1)/("T"_2"T"_1)]`
`log ((4.6 xx 106-1)/(8.19 xx 10^2)) = (Delta "H"^0)/(2.303 xx 8.314)`
`= ((498 - 298)/(498 xx 298))`
`((- 3.2505 xx 2.303 xx 8.314 xx 498 xx 298)/200) = Delta "H"^0`
ΔH0 = - 46181 J mol-1
ΔH0 = - 46.18 KJ mol-1
APPEARS IN
संबंधित प्रश्न
Which one of the following is incorrect statement ?
K1 and K2 are the equilibrium constants for the reactions respectively.
\[\ce{N2(g) + O2(g) <=>[K1] 2NO(g)}\]
\[\ce{NO(g) + O2(g) <=>[K2] 2NO2(g)}\]
What is the equilibrium constant for the reaction \[\ce{NO2(g) <=> 1/2 N2(g) + O2(g)}\]
In the equilibrium,
\[\ce{2A(g) <=> 2B(g) + C2(g)}\]
the equilibrium concentrations of A, B and C2 at 400 K are 1 × 10–4 M, 2.0 × 10–3 M, 1.5 × 10–4 M respectively. The value of KC for the equilibrium at 400 K is
`"K"_"C"/"K"_"P"` for the reaction,
\[\ce{N2(g) + 3H2(g) <=> 2NH3(g)}\] is
For the reaction \[\ce{AB(g) <=> A(g) + B(g)}\], at equilibrium, AB is 20 % dissociated at a total pressure of P, the equilibrium constant Kp is related to the total pressure by the expression
In which of the following equilibrium, Kp and Kc are not equal?
The values of Kp1 and Kp2; for the reactions,
X ⇌ Y + Z,
A ⇌ 2B are in the ratio 9 : 1 if degree of dissociation of X and A be equal then total pressure at equilibrium P1, and P2 are in the ratio
For the formation of Two moles of SO3(g) from SO2 and O2, the equilibrium constant is K1. The equilibrium constant for the dissociation of one mole of SO3 into SO2 and O2 is
What is the effect of added Inert gas on the reaction at equilibrium?
1 mol of CH4, 1 mole of CS2 and 2 mol of H2S are 2 mol of H2 are mixed in a 500 ml flask. The equilibrium constant for the reaction Kc = 4 x 10-2 mol2 lit-2. In which direction will the reaction proceed to reach equilibrium?