मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Which one of the following is incorrect statement ? - Chemistry

Advertisements
Advertisements

प्रश्न

Which one of the following is incorrect statement ?

पर्याय

  • for a system at equilibrium, Q is always less than the equilibrium constant

  • equilibrium can be attained from either side of the reaction

  • presence of catalyst affects both the forward reaction and reverse reaction to the same extent

  • Equilibrium constant varied with temperature

MCQ

उत्तर

for a system at equilibrium, Q is always less than the equilibrium constant

shaalaa.com
Equilibrium Constants
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Physical and Chemical Equilibrium - Evaluation [पृष्ठ २३]

APPEARS IN

सामाचीर कलवी Chemistry - Volume 1 and 2 [English] Class 11 TN Board
पाठ 8 Physical and Chemical Equilibrium
Evaluation | Q I. 6. | पृष्ठ २३

संबंधित प्रश्‍न

K1 and K2 are the equilibrium constants for the reactions respectively.

\[\ce{N2(g) + O2(g) <=>[K1] 2NO(g)}\]

\[\ce{NO(g) + O2(g) <=>[K2] 2NO2(g)}\]

What is the equilibrium constant for the reaction \[\ce{NO2(g) <=> 1/2 N2(g) + O2(g)}\]


\[\ce{[CO(H2O)6]^2+ (aq) (pink) + 4Cl- (aq) <=> [CoCl4]^2- (aq) (blue) + 6 H2O (l)}\]

In the above reaction at equilibrium, the reaction mixture is blue in colour at room temperature. On cooling this mixture, it becomes pink in color. On the basis of this information, which one of the following is true?


The equilibrium constants of the following reactions are:

\[\ce{N2 + 3H2 <=> 2NH3}\]; K1

\[\ce{N2 + O2 <=> 2NO}\]; K2

\[\ce{H2 + 1/2O2 <=> H2O}\]; K3

The equilibrium constant (K) for the reaction;

\[\ce{2NH3 + 5/2 O2 <=> 2NO + 3H2O}\], will be


For a given reaction at a particular temperature, the equilibrium constant has a constant value. Is the value of Q also constant? Explain.


When the numerical value of the reaction quotient (Q) is greater than the equilibrium constant, in which direction does the reaction proceed to reach equilibrium?


For the reaction, \[\ce{A2(g) + B2(g) <=> 2AB(g); \Delta H}\] is -ve.

the following molecular scenes represent differenr reaction mixture. (A-green, B-blue)

Closed 
System At equilibrium (x) (y)
  1. Calculate the equilibrium constant Kp and (Kc).
  2. For the reaction mixture represented by scene (x), (y) the reaction proceed in which directions?
  3. What is the effect of an increase in pressure for the mixture at equilibrium?

Derive a general expression for the equilibrium constant Kp and Kc for the reaction, \[\ce{3H2(g) + N2(g) <=> 2NH3(g)}\].


Write the balanced chemical equation for an equilibrium reaction for which the equilibrium constant is given by expression.

`"K"_"C" = (["NH"_3]^4["O"_2]^5)/(["NO"]^4["H"_2"O"]^6)`


For the reaction

\[\ce{SrCO3(s) <=> SrO(s) + CO2(g)}\]

the value of equilibrium constant Kp = 2.2 × 10-4 at 1002 K. Calculate Kc for the reaction.


At particular temperature Kc = 4 × 10-2 for the reaction, \[\ce{H2S (g) <=> H2(g) +1/2 S2(g)}\]. Calculate the Kc for the following reaction.

\[\ce{2H2S (g) <=> 2H2 (g) + S2 (g)}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×