मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

The half plane represented by 4x + 3y >14 contains the point - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The half plane represented by 4x + 3y >14 contains the point

पर्याय

  • (0, 0)

  • (2, 2)

  • (3, 4)

  • (1, 1)

MCQ

उत्तर

(3, 4)

shaalaa.com
Linear Inequations in Two Variables
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.7: Linear Programming Problems - MCQ

संबंधित प्रश्‍न

Solve graphically: x ≥ 0 


Solve graphically : y ≥ 0


Solve graphically : x ≤ 0 


Solve graphically : x ≥ 0 and y ≥ 0


Solve graphically: x ≤ 0 and y ≥ 0


Solve graphically : x ≤ 0 and y ≤ 0


Solve graphically : x ≥ 0 and y ≤ 0.


Solve graphically : 2y – 5 ≥  0


Solve graphically : 3x + 4 ≤ 0


Solve graphically : 5y + 3 ≤ 0


Solve graphically : x +2y ≤ 6


Solve graphically: 3x + 2y ≥ 0


Solve graphically : 5x – 3y ≤ 0


Solve graphically : 2x + y ≥ 2 and x – y ≤ 1


Solve graphically : x – y ≤ 2 and x + 2y ≤ 8


Solve graphically : x + y ≥ 6 and x + 2y ≤ 10


Solve graphically : 2x + y ≥ 5 and x – y ≤ 1


If a corner point of the feasible solutions are (0, 10) (2, 2) (4, 0) (3, 2) then the point of minimum Z = 3x + 2y is


A solution set of the inequality x ≥ 0


Check the ordered points (1, −1), (2, −1) is a solution of 2x + 3y − 6 ≤ 0


Show the solution set of inequations 4x – 5y ≤ 20 graphically


For the constraint of a linear optimizing function z = 3x1 + 11x2, given by 2x1 + x2 ≤ 2, 4x1 + x2 ≥ 4 and x1, x2 ≥ 0 


The shaded region is represented by the in equations ______ 

 


The maximum value of z = 7x + 6y.
Subject to the constraints x ≤ 45, y ≤ 55 and x ≥ 0, y ≥ 0 is ______.


If S1 and S2 are respectively the sets of local minimum and local maximum points of the function, f(x) = 9x4 + 12x3 - 36x2 + 25, x ∈ R, then ______ 


Solution set of the inequality y ≥ 0 is ______.


Which of the following linear inequalities satisfy the shaded region of the given figure?


The object function z = 4x1 + 5x2, subject to 2x1 + x2 ≥ 7, 2x1 + 3x2 ≤ 15, x2 ≤ 3, x1, x2 ≥ 0 has minimum value at the point is ______.


The objective function of LPP defined over the convex set attains it optimum value at ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×