मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

The integral multiple of fundamental frequencies are ______ - Physics

Advertisements
Advertisements

प्रश्न

The integral multiple of fundamental frequencies are ______ 

पर्याय

  • beats

  • resonance

  • overtones

  • harmonics

MCQ
रिकाम्या जागा भरा

उत्तर

The integral multiple of fundamental frequencies are harmonics.

shaalaa.com
Harmonics and Overtones
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Superposition of Waves - MCQ’s

संबंधित प्रश्‍न

A pipe open at both the ends has a fundamental frequency of 600 Hz. The first overtone of a pipe closed at one end has the same frequency as the first overtone of the open pipe. How long are the two pipes?

(Given: v = 330 m/s)


A string 1m long is fixed at one end. The other end is moved up and down with frequency of 15 Hz. Due to this, a stationary wave with four complete loops gets produced on the string. Find the speed of the progressive wave which produces the stationary wave.
[Hint: Remember that the moving end is an antinode.]


A violin string vibrates with the fundamental frequency of 510 Hz. What is the frequency of the first overtone? 


Two identical strings of length I and 2I vibrate with fundamental frequencies N Hz and 1.5 N Hz, respectively. The ratio of tensions for smaller length to large length is ____________.


The fundamental frequency of a closed pipe is 400 Hz. If `1/3`rd pipe !s tilled with water, then the 3 frequency of 2nd harmonic of the pipe will be (neglect and correction).


If length of a closed organ pipe is 60 cm and velocity of sound is 360 m/s, then the frequency of 1st overtone is ____________.


A thin wire of 99 cm is fixed at both ends as shown in figure. The wire is kept under a tension and is divided into three segments of lengths l1, l2, and l3 as shown in figure. When the wire is made to vibrate respectively with their fundamental frequencies in the ratio 1:2:3. Then the lengths l1, l2, and l3 of the segments respectively are (in cm).


An air column, closed at one end and open at the other resonates with a tuning fork of frequency v, when its length is 45 cm, 99 cm and at two other lengths in between these values. The wavelength of sound in air column is ____________.


A pipe closed at one end produces a fundamental note of 412 Hz. It is cut into two pieces of equal length. The fundamental notes produced by the two pieces are ____________


An open pipe of certain length produces fundamental frequency f1. A closed pipe of some other length produces fundamental .frequency f2. When the two are joined to form a longer close tube, its fundamental frequency will be ____________.


Transverse waves of the same frequency are generated in two steel wires A and B. The diameter of A is twice that of B and the tension in A is half that in B. The ratio of the velocities of waves in A and B is ____________.


Length of an organ pipe open at both ends is 34 cm. If velocity of sound is 340 m is, then the frequency of 2nd overtone is ______.


A stretched uniform wire of length L under tension T is vibrating with frequency 'n' . A closed pipe of same length is also vibrating with same fundamental frequency 'n'. If T is increased by 16 N, it is in resonance with 2nd harmonic of same closed pipe. The initial tension in the wire is ______.


A tuning fork with frequency 800 Hz produces resonance in a resonance column tube with upper end open and lower end closed by water surface. Successive resonances are observed at lengths 9.75 cm, 31.25 cm and 52.75 cm. The speed of sound in air is, ____________.


An organ pipe open at one end is vibrating in first overtone and is in resonance with another pipe open at both ends vibrating in third harmonic. The ratio of lengths of the two pipes is ____________.


The sequence of harmonics of a pipe open at one end and closed at the other end is 250 Hz and 350 Hz, The resonating length of the air column in its fundamental mode will be ______ 

(velocity of sound in air = 340 m/s) 


The equation of simple harmonic wave is given as y = 5sin `pi/2(100t - x)`, where 'x' and 'y' are in metre and time in second. The period of the wave is ______ 


If the length and diameter of a wire are decreased, then for the same tension the natural frequency of stretched wire will ______.


In melde's experiment, when the tension decreases by 0.009 kg-wt, the number of loops changes from 4 to 5. The initial tension is ______.


The air column in an organ pipe closed at one end is made to vibrate so that there are 2 nodes and antinodes each. The mode of vibration is called ______ 


When source of sound moves towards a stationary observer, the wavelength of sound received by him ______.


A pipe closed at one end has length 83 cm. The number of possible natural oscillations of air column whose frequencies lie below 1000 Hz are ______. (velocity of sound in air = 332 m/s)


The closed and open organ pipes have same length. When they are vibrating simultaneously in first overtone, produce three beats. The length of open pipe is made `1/3` rd and closed pipe is made three times the original, the number of beats produced will be ______.


An organ pipe closed at one end resonates with a tuning fork of frequencies 180 Hz and 300 Hz. It will also resonate with tuning fork of frequency ______.


Explain why velocity increases when water flowing in a broad pipe enters a narrower pipe. A sonometer wire, 36 cm long, vibrates with a frequency of 288 Hz in the fundamental mode when it is under a tension of 24.5 N. Calculate the linear density of the material of the wire


A stretched string 0.7 m long and fixed at its ends vibrates in the second overtone of frequency 300 Hz. Find the speed of the transverse wave on the string.


How does the fundamental frequency of a vibrating string depend on the radius of the cross-section of the string and the mass density material of the string?  


Two wires, each 1 m long and of the same diameter, have densities 8 × 103 kg/m3 and 2 × 103 kg/m3 and are stretched by tensions 196 N and 49 N respectively. Compare their fundamental frequencies.


Prove that for pipe closed at one end, the end correction is `e = (n_2l_2-n_1l_1)/(n_1-n_2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×