Advertisements
Advertisements
प्रश्न
The integral multiple of fundamental frequencies are ______
विकल्प
beats
resonance
overtones
harmonics
उत्तर
The integral multiple of fundamental frequencies are harmonics.
APPEARS IN
संबंधित प्रश्न
A violin string vibrates with fundamental frequency of 440Hz. What are the frequencies of the first and second overtones?
What are overtones?
A violin string vibrates with the fundamental frequency of 510 Hz. What is the frequency of the first overtone?
Two identical strings of length I and 2I vibrate with fundamental frequencies N Hz and 1.5 N Hz, respectively. The ratio of tensions for smaller length to large length is ____________.
The fundamental frequency of a closed pipe is 400 Hz. If `1/3`rd pipe !s tilled with water, then the 3 frequency of 2nd harmonic of the pipe will be (neglect and correction).
Two strings A and B of same material are stretched by same tension. The radius of the string A is double the radius of string B. Transverse wave travels on string A with speed 'VA' and on string B with speed 'VB'. The ratio `"V"_"A"/"V"_"B"` is ______.
A uniform rope of mass 6 kg hangs vertically from a rigid support. A block of mass 2 kg is attached to the free end of the rope. A transverse pulse of wavelength 0.06 m is produced at the lower end of the rope. The wavelength of the pulse, when it reaches the top is ______. (in m)
An open organ pipe produces its fundamental frequency f. When the pipe is dipped in water so that `2/5` of its length is under water, then its 5 fundamental frequency becomes ____________.
An organ pipe has fundamental frequency 100 Hz. If its one end is closed, the frequencies produced will be ______.
A pipe of length 85 cm is closed from one end. Find the number of possible natural oscillations of air colunm in the pipe whose frequencies lie below 1250 Hz. The velocity of sound in air is 340 m/s.
If we study the vibration of a pipe open at both ends, then which of the following statements is not true?
The simplest mode of a vibration of the string is called ____________.
The sequence of harmonics of a pipe open at one end and closed at the other end is 250 Hz and 350 Hz, The resonating length of the air column in its fundamental mode will be ______
(velocity of sound in air = 340 m/s)
A pipe closed at one end produces a fundamental note of frequency 'v'. It is cut into two pipes of equal length. The fundamental frequencies produced in the two pipes are ______.
When source of sound moves towards a stationary observer, the wavelength of sound received by him ______.
A pipe closed at one end has length 83 cm. The number of possible natural oscillations of air column whose frequencies lie below 1000 Hz are ______. (velocity of sound in air = 332 m/s)
Two organ pipes are emitting their fundamental notes, when each closed at end, give 5 beats per sec. If their fundamental frequencies are 250 Hz and 255 Hz, then find the ratio of their lengths.
An organ pipe closed at one end resonates with a tuning fork of frequencies 180 Hz and 300 Hz. It will also resonate with tuning fork of frequency ______.
Explain why velocity increases when water flowing in a broad pipe enters a narrower pipe. A sonometer wire, 36 cm long, vibrates with a frequency of 288 Hz in the fundamental mode when it is under a tension of 24.5 N. Calculate the linear density of the material of the wire
How does the fundamental frequency of a vibrating string depend on the radius of the cross-section of the string and the mass density material of the string?
Two organ pipes closed at one end have the same diameters but different lengths. Show that the end correction at each end is e = `(n_1l_1 - n_2l_2)/(n_2 - n_1)`, where the symbols have their usual meanings. Take `γ = 5/3`.
Two wires, each 1 m long and of the same diameter, have densities 8 × 103 kg/m3 and 2 × 103 kg/m3 and are stretched by tensions 196 N and 49 N respectively. Compare their fundamental frequencies.
Prove that for pipe closed at one end, the end correction is `e = (n_2l_2-n_1l_1)/(n_1-n_2)`