Advertisements
Advertisements
Question
The integral multiple of fundamental frequencies are ______
Options
beats
resonance
overtones
harmonics
Solution
The integral multiple of fundamental frequencies are harmonics.
APPEARS IN
RELATED QUESTIONS
A pipe open at both the ends has a fundamental frequency of 600 Hz. The first overtone of a pipe closed at one end has the same frequency as the first overtone of the open pipe. How long are the two pipes?
(Given: v = 330 m/s)
A string 1m long is fixed at one end. The other end is moved up and down with frequency of 15 Hz. Due to this, a stationary wave with four complete loops gets produced on the string. Find the speed of the progressive wave which produces the stationary wave.
[Hint: Remember that the moving end is an antinode.]
The equation of simple harmonic progressive wave is, y = sin π/2 (4t/0.025 – x/0.25). Where all quantities are in the S.I. system. Find the amplitude, frequency, wavelength, and velocity of the wave.
Two identical strings of length I and 2I vibrate with fundamental frequencies N Hz and 1.5 N Hz, respectively. The ratio of tensions for smaller length to large length is ____________.
An organ pipe has a fundamental frequency of 120 Hz. Its fourth overtone is 600 Hz. Find the type of the pipe.
If length of a closed organ pipe is 60 cm and velocity of sound is 360 m/s, then the frequency of 1st overtone is ____________.
A thin wire of 99 cm is fixed at both ends as shown in figure. The wire is kept under a tension and is divided into three segments of lengths l1, l2, and l3 as shown in figure. When the wire is made to vibrate respectively with their fundamental frequencies in the ratio 1:2:3. Then the lengths l1, l2, and l3 of the segments respectively are (in cm).
A uniform rope of mass 6 kg hangs vertically from a rigid support. A block of mass 2 kg is attached to the free end of the rope. A transverse pulse of wavelength 0.06 m is produced at the lower end of the rope. The wavelength of the pulse, when it reaches the top is ______. (in m)
An open organ pipe produces its fundamental frequency f. When the pipe is dipped in water so that `2/5` of its length is under water, then its 5 fundamental frequency becomes ____________.
A pipe closed at one end produces a fundamental note of 412 Hz. It is cut into two pieces of equal length. The fundamental notes produced by the two pieces are ____________
Length of an organ pipe open at both ends is 34 cm. If velocity of sound is 340 m is, then the frequency of 2nd overtone is ______.
A transverse wave propagating along the string is y = 0.3 sin (x + 20t) where x, y are in metre and t in second. The linear density of the string is 1.2 x 10-4 kg/m. The tension in the string is ______.
A stretched uniform wire of length L under tension T is vibrating with frequency 'n' . A closed pipe of same length is also vibrating with same fundamental frequency 'n'. If T is increased by 16 N, it is in resonance with 2nd harmonic of same closed pipe. The initial tension in the wire is ______.
An organ pipe has fundamental frequency 100 Hz. If its one end is closed, the frequencies produced will be ______.
If we study the vibration of a pipe open at both ends, then which of the following statements is not true?
An organ pipe open at one end is vibrating in first overtone and is in resonance with another pipe open at both ends vibrating in third harmonic. The ratio of lengths of the two pipes is ____________.
'n' number of waves are produced on a string in 0.5 seconds. Now the tension in a string is doubled (Keeping radius constant). The number of waves produced in 0.5 seconds for the same harmonic will be ______
A pipe closed at one end produces a fundamental note of frequency 'v'. It is cut into two pipes of equal length. The fundamental frequencies produced in the two pipes are ______.
If the length and diameter of a wire are decreased, then for the same tension the natural frequency of stretched wire will ______.
In melde's experiment, when the tension decreases by 0.009 kg-wt, the number of loops changes from 4 to 5. The initial tension is ______.
The air column in an organ pipe closed at one end is made to vibrate so that there are 2 nodes and antinodes each. The mode of vibration is called ______
A pipe closed at one end has length 83 cm. The number of possible natural oscillations of air column whose frequencies lie below 1000 Hz are ______. (velocity of sound in air = 332 m/s)
An organ pipe closed at one end resonates with a tuning fork of frequencies 180 Hz and 300 Hz. It will also resonate with tuning fork of frequency ______.
Two consecutive harmonics of air column in a pipe closed at one end are frequencies 150 Hz and 250 Hz. Calculate the fundamental frequency.
Two organ pipe, open at both ends, are sounded together and 5 beats are heard per second. The length of shorter pipe is 0.25 m. Find the length of the other pipe. (Given: Velocity of sound in air = 350 m/s and end correction at one end = 0.015 m, same for both pipes.)