मराठी

The magnitude of the vector 6i^-2j^+3k^ is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The magnitude of the vector `6hati - 2hatj + 3hatk` is ______.

पर्याय

  • 1

  • 5

  • 7

  • 12

MCQ
रिकाम्या जागा भरा

उत्तर

The magnitude of the vector `6hati - 2hatj + 3hatk` is 7.

Explanation:

`sqrt(6^2 + (-2)^2 + 3^2)`

= `sqrt(36 + 4 + 9)`

= `sqrt(49)`

= 7.

shaalaa.com
Magnitude and Direction of a Vector
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Delhi Set 1

संबंधित प्रश्‍न

Find a vector `veca` of magnitude `5sqrt2` , making an angle of `π/4` with x-axis, `π/2` with y-axis and an acute angle θ with z-axis. 


Find `|veca| and |vecb|`, if `(veca + vecb).(veca -vecb) = 8 and |veca| = 8|vecb|.`


Find the magnitude of two vectors `veca and vecb`, having the same magnitude and such that the angle between them is 60° and their scalar product is `1/2`.


Find a vector of magnitude 5 units, and parallel to the resultant of the vectors `veca = 2i + 3hatj - hatk` and `vecb = hati - 2hatj + hatk`.


If `veca, vecb, vecc` are mutually perpendicular vectors of equal magnitudes, show that the vector `veca +  vecb+ vecc` is equally inclined to `veca, vecb` and `vecc`.


Represent the following graphically:
(i) a displacement of 40 km, 30° east of north
(ii) a displacement of 50 km south-east
(iii) a displacement of 70 km, 40° north of west.


If the sum of two unit vectors is a unit vector prove that the magnitude of their difference is `sqrt(3)`.


Find a vector of magnitude of 5 units parallel to the resultant of the vectors \[\vec{a} = 2 \hat{i} + 3 \hat{j} - \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} +\widehat{k} .\]


A vector \[\vec{r}\] is inclined at equal angles to the three axes. If the magnitude of \[\vec{r}\] is \[2\sqrt{3}\], find \[\vec{r}\].


Write a vector of magnitude 12 units which makes 45° angle with X-axis, 60° angle with Y-axis and an obtuse angle with Z-axis.


Write the length (magnitude) of a vector whose projections on the coordinate axes are 12, 3 and 4 units.


Find a vector in the direction of \[\overrightarrow{a} = 2 \hat{i} - \hat{j} + 2 \hat{k} ,\] which has magnitude of 6 units.


Write two different vectors having same magnitude.


Write a vector in the direction of vector \[5 \hat{i} - \hat{j} + 2 \hat{k}\] which has magnitude of 8 unit.


Find a vector in the direction of vector \[2 \hat{i} - 3 \hat{j} + 6 \hat{k}\] which has magnitude 21 units.


If in a ∆ABC, A = (0, 0), B = (3, 3 \[\sqrt{3}\]), C = (−3\[\sqrt{3}\], 3), then the vector of magnitude 2 \[\sqrt{2}\] units directed along AO, where O is the circumcentre of ∆ABC is 

 


Prove that in a ∆ABC,  `sin"A"/"a" = sin"B"/"b" = sin"C"/"c"`, where a, b, c represent the magnitudes of the sides opposite to vertices A, B, C, respectively.


The magnitude of the vector `6hat"i" + 2hat"j" + 3hat"k"` is ______.


A vector `vec"r"` is inclined at equal angles to the three axes. If the magnitude of `vec"r"` is `2sqrt(3)` units, find `vec"r"`.


The vector in the direction of the vector `hat"i" - 2hat"j" + 2hat"k"` that has magnitude 9 is ______.


The area under a velocity-time curve represents the change in ______?


In a triangle ABC three forces of magnitudes `3vec(AB), 2vec(AC)` and `6vec(CB)` are acting along the sides AB, AC and CB respectively. If the resultant meets AC at D, then the ratio DC : AD will be equal to :


Find a vector of magnitude 9 units and perpendicular to the vectors.

`veca = 4hati - hatj + hatk` and `vecb = -2hati + hatj - 2hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×