मराठी

A vector rr→ is inclined at equal angles to the three axes. If the magnitude of rr→ is 23 units, find rr→. - Mathematics

Advertisements
Advertisements

प्रश्न

A vector `vec"r"` is inclined at equal angles to the three axes. If the magnitude of `vec"r"` is `2sqrt(3)` units, find `vec"r"`.

बेरीज

उत्तर

Since, the vector `vec"r"` makes equal angles with the axes, their direction cosines should be same

∴ l = m = n

We know that l2 + m2 + n2 = 1

⇒ l2 + l2 + l2 = 1

⇒ 3l2 = 1

⇒ l2 =  `1/3`

⇒ l = `+- 1/sqrt(3)`

∴ `hat"r" = +- 1/sqrt(3)hat"i" +- 1/sqrt(3)hat"j" +- 1/sqrt(3)hat"k"`

⇒ `hat"k" = +- 1/sqrt(3) (hat"i" + hat"j" + hat"k")`

We know that `vec"r" = (hat"r") |vec"r"|`

= `+- 1/sqrt(3) (hat"i" + hat"j" + hat"k") 2sqrt(3)`

= `+- 2(hat"i" + hat"j" + hat"k")`

Hence, the required value of `vec"r"` is `+- 2(hat"i" + hat"j" + hat"k")`.

shaalaa.com
Magnitude and Direction of a Vector
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Vector Algebra - Exercise [पृष्ठ २१५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 10 Vector Algebra
Exercise | Q 6 | पृष्ठ २१५

संबंधित प्रश्‍न

Find `|veca| and |vecb|`, if `(veca + vecb).(veca -vecb) = 8 and |veca| = 8|vecb|.`


Represent the following graphically:
(i) a displacement of 40 km, 30° east of north
(ii) a displacement of 50 km south-east
(iii) a displacement of 70 km, 40° north of west.


Find the unit vector in the direction of \[3 \hat{i} + 4 \hat{j} - 12 \hat{k} .\]


If the sum of two unit vectors is a unit vector prove that the magnitude of their difference is `sqrt(3)`.


If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 4 \hat{i} - 2 \hat{j} + 3 \hat{k} \text { and } \vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a vector of magnitude 6 units which is parallel to the vector \[2 \vec{a} - \vec{b} + 3 \vec{c .}\]


Find a vector of magnitude of 5 units parallel to the resultant of the vectors \[\vec{a} = 2 \hat{i} + 3 \hat{j} - \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} +\widehat{k} .\]


Find a vector \[\vec{r}\] of magnitude \[3\sqrt{2}\] units which makes an angle of \[\frac{\pi}{4}\] and \[\frac{\pi}{4}\] with y and z-axes respectively. 


Write the length (magnitude) of a vector whose projections on the coordinate axes are 12, 3 and 4 units.


Write a vector in the direction of vector \[5 \hat{i} - \hat{j} + 2 \hat{k}\] which has magnitude of 8 unit.


Find a vector \[\overrightarrow{a}\] of magnitude \[5\sqrt{2}\], making an angle of \[\frac{\pi}{4}\] with x-axis, \[\frac{\pi}{2}\] with y-axis and an acute angle θ with z-axis. 


If in a ∆ABC, A = (0, 0), B = (3, 3 \[\sqrt{3}\]), C = (−3\[\sqrt{3}\], 3), then the vector of magnitude 2 \[\sqrt{2}\] units directed along AO, where O is the circumcentre of ∆ABC is 

 


Find all vectors of magnitude `10sqrt(3)` that are perpendicular to the plane of `hat"i" + 2hat"j" + hat"k"` and `-hat"i" + 3hat"j" + 4hat"k"`


Find a vector of magnitude 6, which is perpendicular to both the vectors `2hat"i" - hat"j" + 2hat"k"` and `4hat"i" - hat"j" + 3hat"k"`.


Prove that in any triangle ABC, cos A = `("b"^2 + "c"^2 - "a"^2)/(2"bc")`, where a, b, c are the magnitudes of the sides opposite to the vertices A, B, C, respectively.


The vector in the direction of the vector `hat"i" - 2hat"j" + 2hat"k"` that has magnitude 9 is ______.


Let `vecalpha = hati + 2hatj - hatk, vecbeta = 2hati - hatj + 3hatk, vecγ = 2hati + hatj + 6hatk`. If `vecalpha` and `vecbeta` are both perpendicular to a vector `vecδ` and `vecδ. vecγ` = 10, then the magnitude of `vecδ` is


If the sum of two-unit vectors is a unit vector, then the magnitude of their difference is


Two equal forces acting at a point with an angle of 60° between them, if the resultant is equal `30sqrt(3)N`, the magnitude of the force will be


The area under a velocity-time curve represents the change in ______?


Which of the following statements is false about forces/ couple?


The magnitude of the vector `6hati - 2hatj + 3hatk` is ______.


Read the following passage and answer the questions given below:

Teams A, B, C went for playing a tug of war game. Teams A, B, C have attached a rope to a metal ring and is trying to pull the ring into their own area.

Team A pulls with force F1 = `6hati + 0hatj  kN`,

Team B pulls with force F2 = `-4hati + 4hatj  kN`,

Team C pulls with force F3 = `-3hati - 3hatj  kN`,

  1. What is the magnitude of the force of Team A ?
  2. Which team will win the game?
  3. Find the magnitude of the resultant force exerted by the teams.
    OR
    In what direction is the ring getting pulled?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×