मराठी

Using vectors, find the value of k such that the points (k, – 10, 3), (1, –1, 3) and (3, 5, 3) are collinear. - Mathematics

Advertisements
Advertisements

प्रश्न

Using vectors, find the value of k such that the points (k, – 10, 3), (1, –1, 3) and (3, 5, 3) are collinear.

बेरीज

उत्तर

Let the given points are A(k, 10, 3), B(1, 1, 3) and C(3, 5, 3)

`vec"AB" = (1 - "k")hat"i" + (-1 + 10)hat"j" + (3 - 3)hat"k"`

`vec"AB" = (1 - "k")hat"i" + 9hat"j" + 0hat"k"`

∴ `|vec"AB"| = sqrt((1 - "k")^2 + (9)^2)`

= `sqrt((1 - "k")^2 + 81)`

`vec"BC" = (3 - 1)hat"i" + (5 + 1)hat"j" + (3 - 3)hat"k"`

= `2hat"i" + 6hat"j" + 0hat"k"`

∴ `|vec"BC"| = sqrt((2)^2 + (6)^2)`

= `sqrt(4 + 36)`

= `sqrt(40)`

= `2sqrt(10)`

`vec"AC" = (3 - "k")hat"i" + (5 + 10)hat"j" + (3 - 3)hat"k"`

= `(3 - "k")hat"i" + 15hat"j" + 0hat"k"`

∴ `|vec"AC"| = sqrt((3 - "k")^2 + (15)^2)`

= `sqrt((3 - "k")^2 + 225)`

If A, B and C are collinear, then

`|vec"AB"| + |vec"BC"| = |vec"AC"|`

`sqrt((1 - "k")^2 + 81) + sqrt(40) = sqrt((3 - "k")^2 + 225)`

Squaring both sides, we have

`[sqrt((1 - "k")^2 + 81) + sqrt(40)]^2 = [sqrt((3 - "k")^2 + 225)]^2`

⇒ `(1 - "k")^2 + 81 + 40 + 2sqrt(40) sqrt((1 - "k")^2 + 81) = (3 - "k")^2 + 225`

⇒ `1 + "k"^2 - 2"k" + 121 + 2sqrt(40) sqrt(1 + "k"^2 - 2"k" + 81) =9 + "k"^2 - 6"k" + 225`

⇒ `122 - 2"k" + 2sqrt(40) sqrt("k"^2 - 2"k" + 82) = 234 - 6"k"`

Dividing by 2, we get

⇒ `61 - "k" + sqrt(40) sqrt("k"^2 - 2"k" + 82) = 117 - 3"k"`

⇒ `sqrt(40) sqrt("k"^2 - 2"k" + 82) = 117 - 61 - 3"k" + "k"`

⇒ `sqrt(40) sqrt("k"^2 - 2"k" + 82) = 56 - 2"k"`

⇒ `sqrt(10) sqrt("k"^2 - 2"k" + 82) = 28 - "k"`  ...(Dividing by 2)

Squaring both sides, we get

⇒ 10(k2 – 2k + 82) = 784 + k2 – 56k

⇒ 10k2 – 20k + 820 = 784 + k2 – 56k

⇒ 10k2 – k2 – 20k + 56k + 820 – 784 = 0

⇒ 9k2 + 36k + 36 = 0

⇒ k2 + 4k + 4 = 0

⇒ (k + 2)2 = 0

⇒ k = – 2

⇒ k = – 2

Hence, the required value is k = – 2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Vector Algebra - Exercise [पृष्ठ २१५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 10 Vector Algebra
Exercise | Q 5 | पृष्ठ २१५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

In a regular hexagon ABCDEF, A \[\vec{B}\] = a, B \[\vec{C}\] = \[\overrightarrow{b}\text{ and }\overrightarrow{CD} = \vec{c}\].
Then, \[\overrightarrow{AE}\] =


Find a unit vector perpendicular to each of the vectors `veca + vecb  "and"  veca - vecb  "where"  veca = 3hati + 2hatj + 2hatk and vecb = i + 2hatj - 2hatk` 


If` vec"a" = 2hat"i" + 3hat"j" + + hat"k", vec"b" = hat"i" - 2hat"j" + hat"k"  "and"  vec"c" = -3hat"i" + hat"j" + 2hat"k", "find" [vec"a" vec"b" vec"c"]`


If two sides of a triangle are `hat"i" + 2hat"j" and hat"i" + hat"k"`, find the length of the third side.


A point P with position vector `(- 14hat"i" + 39hat"j" + 28hat"k")/5` divides the line joining A (1, 6, 5) and B in the ratio 3 : 2, then find the point B.


ABCD is a parallelogram. E, F are the midpoints of BC and CD respectively. AE, AF meet the diagonal BD at Q and P respectively. Show that P and Q trisect DB.


If a parallelogram is constructed on the vectors `bar"a" = 3bar"p" - bar"q", bar"b" = bar"p" + 3bar"q" and |bar"p"| = |bar"q"| = 2` and angle between `bar"p" and bar"q"` is `pi/3,` and angle between lengths of the sides is `sqrt7 : sqrt13`.


Show that the vector area of a triangle ABC, the position vectors of whose vertices are `bar"a", bar"b" and bar"c"` is `1/2[bar"a" xx bar"b" + bar"b" xx bar"c" + bar"c" xx bar"a"]`.


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`(bar"a".bar"b") xx (bar"c".bar"d")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a". bar"b" + bar"c"`


For any non-zero vectors a and b, [b a × b a] = ?


For any vector `overlinex` the value of `(overlinex xx hati)^2 + (overlinex xx hatj)^2 + (overlinex xx hatk)^2` is equal to ______


If the vectors `xhat"i" - 3hat"j" + 7hat"k" and hat"i" + "y"hat"j" - "z"hat"k"` are collinear then the value of `"xy"^2/"z"` is equal.


Find the unit vector in the direction of the sum of the vectors `vec"a" = 2hat"i" - hat"j" + 2hat"k"` and `vec"b" = -hat"i" + hat"j" + 3hat"k"`.


Find a vector of magnitude 11 in the direction opposite to that of `vec"PQ"` where P and Q are the points (1, 3, 2) and (–1, 0, 8), respectively.


Using vectors, prove that cos (A – B) = cosA cosB + sinA sinB.


Find the unit vector in the direction of the sum of the vectors `vec"a" = 2hat"i" - hat"j" + hat"k"` and `vec"b" = 2hat"j" + hat"k"`.


If `|vec"a" + vec"b"| = |vec"a" - vec"b"|`, then the vectors `vec"a"` and `vec"b"` are orthogonal.


The formula `(vec"a" + vec"b")^2 = vec"a"^2 + vec"b"^2 + 2vec"a" xx vec"b"` is valid for non-zero vectors `vec"a"` and `vec"b"`


Classify the following measures as scalar and vector.

10-19 coulomb


In Figure, identify the following vector.

 

Collinear but not equal


If `veca ≠ vec(0), veca.vecb = veca.vecc, veca xx vecb = veca xx vecc`, then show that `vecb = vecc`.


Let `veca, vecb` and `vecc` be three unit vectors such that `veca xx (vecb xx vecc) = sqrt(3)/2 (vecb + vecc)`. If `vecb` is not parallel to `vecc`, then the angle between `veca` and `vecc` is


Which of the following measures as vector?


If `|veca| = 3, |vecb| = sqrt(2)/3` and `veca xx vecb` is a unit vector then the angle between `veca` and `vecb` will be ______.


lf ΔABC is an equilateral triangle and length of each side is “a” units, then the value of `bar(AB)*bar(BC) + bar(BC)*bar(CA) + bar(CA)*bar(AB)` is ______.


Check whether the vectors `2hati + 2 hatj + 3hatk, - 3hati + 3hatj + 2hatk and 3hati + 4hatk` From a triangle or not.  


Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk and 3hati + 4hatk`  form a triangle or not. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×