मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

The Numerical Value of Ionization Energy in Ev Equals the Ionization Potential in Volts. Does the Equality Hold If These Quantities Are Measured in Some Other Units? - Physics

Advertisements
Advertisements

प्रश्न

The numerical value of ionization energy in eV equals the ionization potential in volts. Does the equality hold if these quantities are measured in some other units?

टीपा लिहा

उत्तर

The electron volt is the amount of energy given to an electron in order to move it through the electric potential difference of one volt.
1 eV = 1.6 × 10–19 J
The numerical value of ionisation energy in eV is equal to the ionisation potential in volts. The equality does not hold if these quantities are measured in some other units.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Bohr’s Model and Physics of Atom - Short Answers [पृष्ठ ३८३]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 21 Bohr’s Model and Physics of Atom
Short Answers | Q 8 | पृष्ठ ३८३

संबंधित प्रश्‍न

State Bohr's postulate to define stable orbits in the hydrogen atom. How does de Broglie's hypothesis explain the stability of these orbits?


According to Maxwell's theory of electrodynamics, an electron going in a circle should emit radiation of frequency equal to its frequency of revolution. What should be the wavelength of the radiation emitted by a hydrogen atom in ground state if this rule is followed?


A neutron moving with a speed υ strikes a hydrogen atom in ground state moving towards it with the same speed. Find the minimum speed of the neutron for which inelastic (completely or partially) collision may take place. The mass of neutron = mass of hydrogen = 1.67 × 10−27 kg.v


Consider a neutron and an electron bound to each other due to gravitational force. Assuming Bohr's quantization rule for angular momentum to be valid in this case, derive an expression for the energy of the neutron-electron system.


Answer the following question.
Calculate the de-Broglie wavelength associated with the electron revolving in the first excited state of the hydrogen atom. The ground state energy of the hydrogen atom is – 13.6 eV.


What is the energy in joules released when an electron moves from n = 2 to n = 1 level in a hydrogen atom?


Which of the following is/are CORRECT according to Bohr's atomic theory?

(I) Energy is emitted when electron moves from a higher stationary state to a lower one.

(II) Orbits are arranged concentrically around the nucleus in an increasing order of energy.

(III) The energy of an electron in the orbit changes with time.


Which of these statements correctly describe the atomic model according to classical electromagnetic theory?


Taking the Bohr radius as a0 = 53 pm, the radius of Li++ ion in its ground state, on the basis of Bohr’s model, will be about ______.


The mass of a H-atom is less than the sum of the masses of a proton and electron. Why is this?


The inverse square law in electrostatics is |F| = `e^2/((4πε_0).r^2)` for the force between an electron and a proton. The `(1/r)` dependence of |F| can be understood in quantum theory as being due to the fact that the ‘particle’ of light (photon) is massless. If photons had a mass mp, force would be modified to |F| = `e^2/((4πε_0)r^2) [1/r^2 + λ/r]`, exp (– λr) where λ = mpc/h and h = `h/(2π)`. Estimate the change in the ground state energy of a H-atom if mp were 10-6 times the mass of an electron.


Given below are two statements:

Statements I: According to Bohr's model of an atom, qualitatively the magnitude of velocity of electron increases with decrease in positive charges on the nucleus as there is no strong hold on the electron by the nucleus.

Statement II: According to Bohr's model of an atom, qualitatively the magnitude of velocity of electron increase with a decrease in principal quantum number.
In light of the above statements, choose the most appropriate answer from the options given below:


The energy required to remove the electron from a singly ionized Helium atom is 2.2 times the energy required to remove an electron from Helium atom. The total energy required to ionize the Helium atom completely is ______. 


Orbits of a particle moving in a circle are such that the perimeter of the orbit equals an integer number of de-Broglie wavelengths of the particle. For a charged particle moving in a plane perpendicular to a magnetic field, the radius of the nth orbital will therefore be proportional to:


If 13.6 eV energy is required to ionize the hydrogen atom, then the energy required to remove an electron from n = 2 is ______.


What is the energy associated with first orbit of Li2+ (RH = 2.18 × 10-18)?


State three postulates of Bohr's theory of hydrogen atom.


Using Bohr’s Theory of hydrogen atom, obtain an expression for the velocity of an electron in the nth orbit of an atom.


The figure below is the Energy level diagram for the Hydrogen atom. Study the transitions shown and answer the following question:

  1. State the type of spectrum obtained.
  2. Name the series of spectrum obtained.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×