Advertisements
Advertisements
प्रश्न
The plates of a parallel plate capacitor have an area of 90 cm2 each and are separated by 2.5 mm. The capacitor is charged by connecting it to a 400 V supply.
(a) How much electrostatic energy is stored by the capacitor?
(b) View this energy as stored in the electrostatic field between the plates, and obtain the energy per unit volume u. Hence arrive at a relation between u and the magnitude of electric field E between the plates.
उत्तर
Area of the plates of a parallel plate capacitor, A = 90 cm2 = 90 × 10−4 m2
Distance between the plates, d = 2.5 mm = 2.5 × 10−3 m
Potential difference across the plates, V = 400 V
(a) Capacitance of the capacitor is given by the relation,
C = `(in_0"A")/"d"`
Electrostatic energy stored in the capacitor is given by the relation, `"E"_1 = 1/2 "CV"^2`
= `1/2 (in_0"A")/"d""V"^2`
Where,
`in_0` = Permittivity of free space = 8.85 × 10−12 C2 N−1 m−2
∴ `"E"_1 = (1 xx 8.85 xx 10^-12 xx 90 xx 10^-4 xx (400)^2)/(2 xx 2.5 xx 10^-3) = 2.55 xx 10^-6 "J"`
Hence, the electrostatic energy stored by the capacitor is `2.55 xx 10^-6 "J"`
(b) Volume of the given capacitor,
`"V'" = "A" xx "d"`
= `90 xx 10^-4 xx 25 xx 10^-3`
= `2.25 xx 10^-4 "m"^3`
Energy stored in the capacitor per unit volume is given by,
`"u" = "E"_1/("V'")`
= `(2.55 xx 10^-6)/(2.25 xx 10^-4) = 0.113 "J m"^-3`
Again, u = `"E"_1/("V'")`
= `((1/2)"CV"^2)/("Ad") = ((in_0"A")/(2"d")V^2)/("Ad") = 1/2in_0("V"/
"d")^2`
Where,
`"V"/"d"` = Electric intensity = E
∴ `"u"=1/2 in_0"E"^2`
APPEARS IN
संबंधित प्रश्न
Draw a neat labelled diagram of a parallel plate capacitor completely filled with dielectric.
Considering the case of a parallel plate capacitor being charged, show how one is required to generalize Ampere's circuital law to include the term due to displacement current.
In a parallel plate capacitor with air between the plates, each plate has an area of 6 × 10−3 m2 and the distance between the plates is 3 mm. Calculate the capacitance of the capacitor. If this capacitor is connected to a 100 V supply, what is the charge on each plate of the capacitor?
What is the area of the plates of a 2 F parallel plate capacitor, given that the separation between the plates is 0.5 cm? [You will realize from your answer why ordinary capacitors are in the range of µF or less. However, electrolytic capacitors do have a much larger capacitance (0.1 F) because of very minute separation between the conductors.]
Show that the force on each plate of a parallel plate capacitor has a magnitude equal to `(1/2)` QE, where Q is the charge on the capacitor, and E is the magnitude of the electric field between the plates. Explain the origin of the factor `1/2`.
A parallel plate capacitor is to be designed with a voltage rating 1 kV, using a material of dielectric constant 3 and dielectric strength about 107 Vm−1. (Dielectric strength is the maximum electric field a material can tolerate without breakdown, i.e., without starting to conduct electricity through partial ionisation.) For safety, we should like the field never to exceed, say 10% of the dielectric strength. What minimum area of the plates is required to have a capacitance of 50 pF?
A ray of light falls on a transparent sphere with centre C as shown in the figure. The ray emerges from the sphere parallel to the line AB. Find the angle of refraction at A if the refractive index of the material of the sphere is \[\sqrt{3}\].
A slab of material of dielectric constant K has the same area as that of the plates of a parallel plate capacitor but has the thickness d/3, where d is the separation between the plates. Find out the expression for its capacitance when the slab is inserted between the plates of the capacitor.
Define the capacitance of a capacitor and its SI unit.
A parallel-plate capacitor with plate area 20 cm2 and plate separation 1.0 mm is connected to a battery. The resistance of the circuit is 10 kΩ. Find the time constant of the circuit.
A parallel-plate capacitor of plate area 40 cm2 and separation between the plates 0.10 mm, is connected to a battery of emf 2.0 V through a 16 Ω resistor. Find the electric field in the capacitor 10 ns after the connections are made.
A parallel-plate capacitor has plate area 20 cm2, plate separation 1.0 mm and a dielectric slab of dielectric constant 5.0 filling up the space between the plates. This capacitor is joined to a battery of emf 6.0 V through a 100 kΩ resistor. Find the energy of the capacitor 8.9 μs after the connections are made.
Answer the following question.
Describe briefly the process of transferring the charge between the two plates of a parallel plate capacitor when connected to a battery. Derive an expression for the energy stored in a capacitor.
Solve the following question.
A parallel plate capacitor is charged by a battery to a potential difference V. It is disconnected from the battery and then connected to another uncharged capacitor of the same capacitance. Calculate the ratio of the energy stored in the combination to the initial energy on the single capacitor.
A parallel plate capacitor is connected to a battery as shown in figure. Consider two situations:
- Key K is kept closed and plates of capacitors are moved apart using insulating handle.
- Key K is opened and plates of capacitors are moved apart using insulating handle.
Choose the correct option(s).
- In A: Q remains same but C changes.
- In B: V remains same but C changes.
- In A: V remains same and hence Q changes.
- In B: Q remains same and hence V changes.