मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

The Rays of Different Colours Fail to Converge at a Point After Going Through a Converging Lens. this Defect is Called - Physics

Advertisements
Advertisements

प्रश्न

The rays of different colours fail to converge at a point after going through a converging lens. This defect is called

पर्याय

  •  spherical aberration

  • distortion

  •  coma

  • chromatic aberration.

MCQ

उत्तर

chromatic aberration

When light rays of different colours do not converge at the same point after passing through a converging lens, it is called chromatic aberration. This happens because a lens has different refractive indices for different colours, i.e, for different wavelengths of light.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Geometrical Optics - MCQ [पृष्ठ ४११]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 18 Geometrical Optics
MCQ | Q 18 | पृष्ठ ४११

संबंधित प्रश्‍न

Use the mirror equation to show that a convex mirror always produces a virtual image independent of the location of the object.


Using mirror formula, explain why does a convex mirror always produce a virtual image.


A point object O is placed at a distance of 15cm from a convex lens L of focal length 1 Ocm as shown in Figure 5 below. On the other side of the lens, a convex mirror M is placed such that its distance from the lens is equal to the focal length of the lens. The final image formed by this combination is observed to coincide with the object O. Find the focal length of the convex mirror


Use the mirror equation to show a convex mirror always produces a virtual image independent of the location of the object ?


A point source of light is placed in front of a plane mirror.


A light ray falling at an angle of 45° with the surface of a clean slab of ice of thickness 1.00 m is refracted into it at an angle of 30°. Calculate the time taken by the light rays to cross the slab. Speed of light in vacuum = 3 × 108 m s−1.


A cylindrical vessel of diameter 12 cm contains 800π cm3 of water. A cylindrical glass piece of diameter 8.0 cm and height 8.0 cm is placed in the vessel. If the bottom of the vessel under the glass piece is seen by the paraxial rays (see figure), locate its image. The index of refraction of glass is 1.50 and that of water is 1.33.


A small object is placed at the centre of the bottom of a cylindrical vessel of radius 3 cm and height 4 cm filled completely with water. Consider the ray leaving the vessel through a corner. Suppose this ray and the ray along the axis of the vessel are used to trace the image. Find the apparent depth of the image and the ratio of real depth to the apparent depth under the assumptions taken. Refractive index of water = 1.33.


A light ray is incident normally on the face AB of a right-angled prism ABC (μ = 1.50) as shown in figure. What is the largest angle ϕ for which the light ray is totally reflected at the surface AC?


Find the maximum angle of refraction when a light ray is refracted from glass (μ = 1.50) to air.


Name the physical principle on which the working of optical fibers is based.


The figure below shows the positions of a point object O, two lenses, a plane mirror and the final image I which coincides with the object. The focal length of the convex lens is 20 cm. Calculate the focal length of the concave lens.


For paraxial rays, show that the focal length of a spherical mirror is one-half of its radius of curvature.


A parallel beam of light is allowed to fall on a transparent spherical globe of diameter 30cm and refractive index 1.5. The distance from the centre of the globe at which the beam of light can converge is ______ mm.


The focal length f is related to the radius of curvature r of the spherical convex mirror by ______.


When a clock is viewed in a mirror, the needles exhibit a time which appears to be 8:20. Then the actual time will be:


An upright object is placed at a distance of 40 cm in front of a convergent lens of a focal length of 20 cm. A convergent mirror of focal length 10 cm is placed at a distance of 60 cm on the other side of the lens. The position and size of the final image will be ______.


A point object is placed at a distance of 30 cm from a convex mirror of a focal length of 30 cm. What is the separation between the image and the object?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×