Advertisements
Advertisements
प्रश्न
The weight of 50 workers is given below:
Weight in Kg | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 | 100-110 | 110-120 |
No. of Workers | 4 | 7 | 11 | 14 | 6 | 5 | 3 |
Draw an ogive of the given distribution using a graph sheet. Take 2 cm = 10 kg on one axis and 2 cm = 5 workers along the other axis. Use a graph to estimate the following:
1) The upper and lower quartiles.
2) If weighing 95 kg and above is considered overweight, find the number of workers who are overweight.
उत्तर
The cumulative frequency table of the given distribution table is as follows:
Weight in Kg | Number of workers | Cumulative frequency |
50-60 | 4 | 4 |
60-70 | 7 | 11 |
70-80 | 11 | 22 |
80-90 | 14 | 36 |
90-100 | 6 | 42 |
100-110 | 5 | 47 |
110-120 | 3 | 50 |
The ogive is as follows:
Number of worker = 50
1) Upper quartile (Q3) = `((3 xx 50)/4)^"th"` term = `(37.5)^th` term = 92
Lower quartile (`Q_1`) = `(50/4)^"th"` term = `(12.5)^"th"` term = 71.1
2) Through mark of 95 on the x-axis, draw a vertical line which meets the graph at point C.
Then through point C, draw a horizontal line which meets the y-axis at the mark of 39
Thus, number of workers weighing 95 kg and above = 50 - 39 = 11
APPEARS IN
संबंधित प्रश्न
The daily wages of 80 workers in a project are given below.
Wages (in Rs.) |
400-450 | 450-500 | 500-550 | 550-600 | 600-650 | 650-700 | 700-750 |
No. of workers |
2 | 6 | 12 | 18 | 24 | 13 | 5 |
Use a graph paper to draw an ogive for the above distribution. (Use a scale of 2 cm = Rs. 50 on x-axis and 2 cm = 10 workers on y-axis). Use your ogive to estimate:
- the median wage of the workers.
- the lower quartile wage of workers.
- the numbers of workers who earn more than Rs. 625 daily.
Draw an ogive by less than method for the following data:
No. of rooms: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
No. of houses: | 4 | 9 | 22 | 28 | 24 | 12 | 8 | 6 | 5 | 2 |
The following table gives the height of trees:
Height | No. of trees |
Less than 7 Less than 14 Less than 21 Less than 28 Less than 35 Less than 42 Less than 49 Less than 56 |
26 57 92 134 216 287 341 360 |
Draw 'less than' ogive and 'more than' ogive.
The annual profits earned by 30 shops of a shopping complex in a locality give rise to the following distribution:
Profit (in lakhs in Rs) | Number of shops (frequency) |
More than or equal to 5 More than or equal to 10 More than or equal to 15 More than or equal to 20 More than or equal to 25 More than or equal to 30 More than or equal to 35 |
30 28 16 14 10 7 3 |
Draw both ogives for the above data and hence obtain the median.
Draw a cumulative frequency curve (ogive) for the following distributions:
Class Interval | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 – 35 | 35 – 40 |
Frequency | 10 | 15 | 17 | 12 | 10 | 8 |
Draw a cumulative frequency curve (ogive) for the following distributions:
Class Interval | 10 – 19 | 20 – 29 | 30 – 39 | 40 – 49 | 50 – 59 |
Frequency | 23 | 16 | 15 | 20 | 12 |
Construct a frequency distribution table for the following distributions:
Marks (more than) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Cumulative frequency | 100 | 87 | 65 | 55 | 42 | 36 | 31 | 21 | 18 | 7 | 0 |
Draw an ogive for the following :
Class Interval | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequency | 8 | 12 | 10 | 14 | 6 |
Draw an ogive for the following :
Age in years | Less than 10 | Less than 20 | Less than 30 | Less than 40 | Less than 50 |
No. of people | 0 | 17 | 42 | 67 | 100 |
Draw an ogive for the following :
Marks obtained | More than 10 | More than 20 | More than 30 | More than 40 | More than 50 |
No. of students | 8 | 25 | 38 | 50 | 67 |