मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएस.एस.एल.सी. (इंग्रजी माध्यम) इयत्ता ८

Three identical coins, each of diameter 6 cm are placed as shown. Find the area of the shaded region between the coins. (π = 3.14) (3=1.732) - Mathematics

Advertisements
Advertisements

प्रश्न

Three identical coins, each of diameter 6 cm are placed as shown. Find the area of the shaded region between the coins. (π = 3.14) `(sqrt(3) = 1.732)`

बेरीज

उत्तर

Given diameter of the coins = 6 cm

∴ Radius of the coins = `6/2` = 3 cm

Area of the shaded region = Area of equilateral triangle – Area of 3 sectors of angle 60°

Area of the equilateral triangle = `sqrt(3)/4  "a"^2  "units"^2`

= `sqrt(3)/4 xx 6 xx 6  "cm"^2`

= `(1.732)/4 xx 6 xx 6  "m"^2` 

= 15.588 cm

Area of 3 sectors =  `3 xx theta/(360^circ) xx pi"r"^2  "sq.units"`

= `3 xx (60^circ)/(360^circ) xx 3.14 xx 3 xx 3  "cm"^2`

= 1.458 cm2

∴ Area of the shaded region = 15.588 – 14.13 cm2 

= 1.458 cm2

Required area = 1.458 cm2 ...(approximately)

shaalaa.com
Area of the Sector
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Measurements - Exercise 2.4 [पृष्ठ ७२]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 8 TN Board
पाठ 2 Measurements
Exercise 2.4 | Q 7 | पृष्ठ ७२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×