मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Three Resonant Frequencies of a String Are 90, 150 and 210 Hz. (A) Find the Highest Possible Fundamental Frequency of Vibration of this String. - Physics

Advertisements
Advertisements

प्रश्न

Three resonant frequencies of a string are 90, 150 and 210 Hz. (a) Find the highest possible fundamental frequency of vibration of this string. (b) Which harmonics of the fundamental are the given frequencies? (c) Which overtones are these frequencies? (d) If the length of the string is 80 cm, what would be the speed of a transverse wave on this string?

बेरीज

उत्तर

Given:
Let the three resonant frequencies of a string be 

\[f_1  = 90  Hz\] 

\[ f_2  = 150  Hz\] 

\[ f_3  = 210  Hz\]
(a) So, the highest possible fundamental frequency of the string is \[f = 30  Hz\]  because f1f2 and f3 are the integral multiples of 30 Hz.
(b) So, these frequencies can be written as follows:

\[f_1  = 3f\] 

\[ f_2  = 5f\] 

\[ f_3  = 7f\]

Hence, f1f2, and f3 are the third harmonic, the fifth harmonic and the seventh harmonic, respectively.
(c) The frequencies in the string are f, 2f, 3f, 4f, 5f ...
∴ 3f = 2nd overtone and 3rd harmonic
      5f = 4th overtone and 5th harmonic
      7th= 6th overtone and 7th harmonic

(d) Length of the string (L) = 80 cm = 0.8 m
Let the speed of the wave be v.
So, the frequency of the third harmonic is given by:

\[f_1  = \left( \frac{3}{2 \times L} \right)  v\] 

\[ \Rightarrow 90 = \left\{ \frac{3}{\left( 2 \times 80 \right)} \right\} \times v\] 

\[ \Rightarrow v = \frac{\left( 90 \times 2 \times 80 \right)}{3}\] 

\[ = 30 \times 2 \times 80\] 

\[  = 4800  \text{ cm/s }\] 

\[ \Rightarrow v = 48  m/s\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Wave Motion and Waves on a String - Exercise [पृष्ठ ३२६]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 15 Wave Motion and Waves on a String
Exercise | Q 46 | पृष्ठ ३२६

संबंधित प्रश्‍न

When a transverse wave on a string is reflected from the free end, the phase change produced is ..............

(a) zero rad

(b) ` pi/2 ` rad

(c) `(3pi)/4` rad

(d) `pi`  rad


A transverse harmonic wave on a string is described by y(x, t) = 3.0 sin (36 t + 0.018 x + π/4) 

Where x and y are in cm and t in s. The positive direction of x is from left to right.

(a) Is this a travelling wave or a stationary wave?

If it is travelling, what are the speed and direction of its propagation?

(b) What are its amplitude and frequency?

(c) What is the initial phase at the origin?

(d) What is the least distance between two successive crests in the wave?


Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent (i) a traveling wave, (ii) a stationary wave or (iii) none at all:

y = cos x sin t + cos 2x sin 2t


Explain why (or how) The shape of a pulse gets distorted during propagation in a dispersive medium.


A transverse wave is produced on a stretched string 0.9 m long and fixed at its ends. Find the speed of the transverse wave, when the string vibrates while emitting the second overtone of frequency 324 Hz.


Explain the reflection of transverse and longitudinal waves from a denser medium and a rared medium.


A steel wire of length 64 cm weighs 5 g. If it is stretched by a force of 8 N, what would be the speed of a transverse wave passing on it?


Consider the following statements about sound passing through a gas.
(A) The pressure of the gas at a point oscillates in time.
(B) The position of a small layer of the gas oscillates in time.


A transverse wave described by \[y = \left( 0 \cdot 02  m \right)  \sin  \left( 1 \cdot 0  m^{- 1} \right)  x + \left( 30  s^{- 1} \right)t\] propagates on a stretched string having a linear mass density of \[1 \cdot 2 \times  {10}^{- 4}   kg   m^{- 1}\] the tension in the string.


Two blocks each having a mass of 3⋅2 kg are connected by a wire CD and the system is suspended from the ceiling by another wire AB (See following figure). The linear mass density of the wire AB is 10 g m−1 and that of CD is 8 g m−1. Find the speed of a transverse wave pulse produced in AB and CD.


A heavy but uniform rope of length L is suspended from a ceiling. (a) Write the velocity of a transverse wave travelling on the string as a function of the distance from the lower end. (b) If the rope is given a sudden sideways jerk at the bottom, how long will it take for the pulse to reach the ceiling? (c) A particle is dropped from the ceiling at the instant the bottom end is given the jerk. Where will the particle meet the pulse?


A transverse wave of amplitude 0⋅50 mm and frequency 100 Hz is produced on a wire stretched to a tension of 100 N. If the wave speed is 100 m s−1, what average power is the source transmitting to the wire?


If the speed of a transverse wave on a stretched string of length 1 m is 60 m−1, what is the fundamental frequency of vibration?


A 660 Hz tuning fork sets up vibration in a string clamped at both ends. The wave speed for a transverse wave on this string is 220 m s−1 and the string vibrates in three loops. (a) Find the length of the string. (b) If the maximum amplitude of a particle is 0⋅5 cm, write a suitable equation describing the motion.


The phenomenon of beats can take place


Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent (i) a traveling wave, (ii) a stationary wave or (iii) none at all:

y = 2 cos (3x) sin (10t)


Given below are some functions of x and t to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent (i) a traveling wave, (ii) a stationary wave or (iii) none at all:

`"y" = 2sqrt(x - "vt")`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×