मराठी

Two Concentric Circles of Radii a and B (A > B) Are Given. Find the Length of the Chord of the Larger Circle Which Touches the Smaller Circle. - Mathematics

Advertisements
Advertisements

प्रश्न

Two concentric circles of radii a and b (a > b) are given. Find the length of the chord of the larger circle which touches the smaller circle.

उत्तर

It is given that AC is the tangent to the smaller circle. We know that the tangent to a circle is perpendicular to the radius through the point of contact.

∴ OB ⊥ AC

In ∆OBA,

\[\left( OB \right)^2 + \left( AB \right)^2 = \left( OA \right)^2 \left[ \text{Using Pythagoras theorem} \right]\]
\[ \Rightarrow b^2 + \left( AB \right)^2 = a^2 \]
\[ \Rightarrow \left( AB \right)^2 = a^2 - b^2 \]
\[ \Rightarrow AB = \sqrt{a^2 - b^2}\]

Since AC is the chord of the larger circle,

∴ AB = BC    (Perpendicular from the centre of a circle to the chord, bisects the chord.)

∴ AC = 2AB = 2

\[\sqrt{a^2 - b^2}\]
Thus, the length of the chord is 2
\[\sqrt{a^2 - b^2}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Foreign Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×