मराठी

Two Long Straight Parallel Conductors 'A' and 'B', Carrying Steady Currents Ia And Ib Are Separated by a Distance D. Write the Magnitude and Direction of the Magnetic Field Produced by the Conductor - Physics

Advertisements
Advertisements

प्रश्न

Two long straight parallel conductors 'a' and 'b', carrying steady currents Ia and Ib are separated by a distance d. Write the magnitude and direction of the magnetic field produced by the conductor 'a' at the points along the conductor 'b'. If the currents are flowing in the same direction, what is the nature and magnitude of the force between the two conductors?

उत्तर

 Let a and b be long straight parallel conductors. Ia and Ib are the current flowing through them and are separated by a distance d.

Magnetic field induction at a point P on a conductor b due to current Ia passing through a is

\[B_1 = \frac{\mu_0 2 I_a}{4\pi d}\]

Now, unit length of b will experience a force as

\[F_2 = B_1 I_b \times 1 = B_1 I_b \]

\[ \therefore F_2 = \frac{\mu_0}{4\pi}\frac{2 I_a I_b}{d}\]

Conductor a also experiences the same amount of force, directed towards b. Hence, a and b attract each other.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) Foreign Set 3

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Two long and parallel straight wires A and B carrying currents of 8.0 A and 5.0 A in the same direction are separated by a distance of 4.0 cm. Estimate the force on a 10 cm section of wire A.


Derive the expression for force per unit length between two long straight parallel current carrying conductors. Hence define one ampere.


A charged particle goes undeflected in a region containing an electric and a magnetic field. It is possible that
(a) `vecE" || "vecB , vecv" || " vec E `
(b) `vecE  "is not parallel"  vecB`
(c) `vecv " || " vecB  but  vecv  "is not parallel"`
(d) `vecE" || " vecB  but   vecv "is not parallel"`


Two parallel, long wires carry currents i1 and i2 with i1 > i2. When the currents are in the same direction, the magnetic field at a point midway between the wires is 10 µT. If the direction of i2 is reversed, the field becomes 30 µT. The ratio i1/i2 is 


A long, straight wire of radius R carries a current distributed uniformly over its cross section. T he magnitude of the magnetic field is
(a) maximum at the axis of the wire
(b) minimum at the axis of the wire
(c) maximum at the surface of the wire
(d) minimum at the surface of the wire.


A transmission wire carries a current of 100 A. What would be the magnetic field B at a point on the road if the wire is 8 m above the road? 


A rectangular coil of 100 turns has length 5 cm and width 4 cm. It is placed with its plane parallel to a uniform magnetic field and a current of 2 A is sent through the coil. Find the magnitude of the magnetic field B if the torque acting on the coil is 0.2 N m−1


Four long, straight wires, each carrying a current of 5.0 A, are placed in a plane as shown in figure. The points of intersection form a square of side 5.0 cm.
(a) Find the magnetic field at the centre P of the square.
(b) Q1, Q2, Q3, and Q4, are points situated on the diagonals of the square and at a distance from P that is equal to the diagonal of the square. Find the magnetic fields at these points. 


A conducting circular loop of radius a is connected to two long, straight wires. The straight wires carry a current i as shown in figure. Find the magnetic field B at the centre of the loop. 


The figure below are two long, parallel wires carrying current in the same direction such that I1 < I2.

  1. In which direction will wire I1 move?
  2. If the direction of the current I2 is reversed, in which direction will the wire I1 move now?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×