मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Four Long, Straight Wires, Each Carrying a Current of 5.0 A, Are Placed in a Plane as Shown in Figure. the Points of Intersection Form a Square of Side 5.0 Cm. - Physics

Advertisements
Advertisements

प्रश्न

Four long, straight wires, each carrying a current of 5.0 A, are placed in a plane as shown in figure. The points of intersection form a square of side 5.0 cm.
(a) Find the magnetic field at the centre P of the square.
(b) Q1, Q2, Q3, and Q4, are points situated on the diagonals of the square and at a distance from P that is equal to the diagonal of the square. Find the magnetic fields at these points. 

टीपा लिहा

उत्तर

Given: 

Let the horizontal wires placed at the bottom and top are denoted as W1 and W2 respectively.
Let the vertical wires placed at the right and left to point P are denoted as W3 and W4 respectively.
Magnitude of current, I = 5 A
(a) Consider point P.
Magnetic fields due to wires W1 and W2 are the same in magnitude, but they are opposite in direction.
Magnetic fields due to wires W3 and W4 are the same in magnitude, but they are opposite in direction.
Hence, the net magnetic field is zero.
Net magnetic field at P due to these four wires = 0

(b) Consider point Q1.
Due to wire W1, separation of point Q1 from the wire (d) is 7.5 cm.
So, the magnetic field due to current in the wire is given by

\[B_{W_1}  = \frac{\mu_0 I}{2\pi d}\]

       = 4 × 10−5 T     (In upward direction)

Due to wire W2, separation of point Q1 from the wire (d) is 2.5 cm.
So, the magnetic field due to current in the wire is given by

\[B_{W_2}  = \frac{4}{3} \times  {10}^{- 5}   T\]    (In upward direction)

Due to wire W3, separation of point Q1 from the wire (d) is 7.5 cm.
So, the magnetic field due to current in the wire is given by
BW3 = 4 × 10−5 T   (In upward direction)

Due to wire W4, separation of point Q1 from the wire (d) is 2.5 cm.
So, the magnetic field due to current in the wire is given by

\[B_{W_4}  = \frac{4}{3} \times  {10}^{- 5}   T\]   (In upward direction)

∴ Net magnetic field at point Q1

\[B_{Q_1}  = \left( 4 + \frac{4}{3} + 4 + \frac{4}{3} \right) \times  {10}^{- 5}   \] 

\[             = \frac{32}{3} \times  {10}^{- 5} \] 

\[             = 1 . 06 \times  {10}^{- 4}   T        (\text{ In  upward  direction })\]

At point Q2,
Magnetic field due to wire W1:
BW1 = 4 × 10−5 T   (In upward direction)
Magnetic field due to wire W2:
\[B_{W_2}  = \frac{4}{3} \times  {10}^{- 5}   T\]    (In upward direction)
Magnetic field due to wire W3:
\[B_{W_3}  = \frac{4}{3} \times  {10}^{- 5}   T\]   (In downward direction)
Magnetic field due to wire W4:
\[B_{W_4}  = 4 \times  {10}^{- 5}   T\]      (In downward direction)
∴ Net magnetic field at point Q2, \[B_{Q_2}  = 0\]
Similarly, at point Q3, the magnetic field is 1.1 × 10−4 T (in downward direction) and at point Q4, the magnetic field is zero.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Magnetic Field due to a Current - Exercises [पृष्ठ २५०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 13 Magnetic Field due to a Current
Exercises | Q 12 | पृष्ठ २५०

संबंधित प्रश्‍न

The figure shows three infinitely long straight parallel current carrying conductors. Find the
(i) magnitude and direction of the net magnetic field at point A lying on conductor 1,
(ii) magnetic force on conductor 2.


An electron is moving along the positive x-axis. You want to apply a magnetic field for a short time so that the electron may reverse its direction and move parallel to the negative x-axis. This can be done by applying the magnetic field along
(a) y-axis
(b) z-axis
(c) y-axis only
(d) z-axis only


A long, straight wire of radius R carries a current distributed uniformly over its cross section. T he magnitude of the magnetic field is
(a) maximum at the axis of the wire
(b) minimum at the axis of the wire
(c) maximum at the surface of the wire
(d) minimum at the surface of the wire.


A transmission wire carries a current of 100 A. What would be the magnetic field B at a point on the road if the wire is 8 m above the road? 


A long, straight wire of radius r carries a current i and is placed horizontally in a uniform magnetic field B pointing vertically upward. The current is uniformly distributed over its cross section. (a) At what points will the resultant magnetic field have maximum magnitude? What will be the maximum magnitude? (b) What will be the minimum  magnitude of the resultant magnetic field?



The magnetic field existing in a region is given by  `vecB = B_0(1 + x/1)veck` . A square loop of edge l and carrying a current i, is placed with its edges parallel to the xy axes. Find the magnitude of the net magnetic force experienced by the loop.


A rectangular coil of 100 turns has length 5 cm and width 4 cm. It is placed with its plane parallel to a uniform magnetic field and a current of 2 A is sent through the coil. Find the magnitude of the magnetic field B if the torque acting on the coil is 0.2 N m−1


Figure shows a metallic wire of resistance 0.20 Ω sliding on a horizontal, U-shaped metallic rail. The separation between the parallel arms is 20 cm. An electric current of 2.0 µA passes through the wire when it is slid at a rate of 20 cm s−1. If the horizontal component of the earth's magnetic field is 3.0 × 10−5 T, calculate the dip at the place.


Figure shows two parallel wires separated by a distance of 4.0 cm and carrying equal currents of 10 A along opposite directions. Find the magnitude of the magnetic field B at the points A1, A2, A3


Consider a 10-cm long piece of a wire which carries a current of 10 A. Find the magnitude of the magnetic field due to the piece at a point which makes an equilateral triangle with the ends of the piece.


A long, straight wire carries a current i. Let B1 be the magnetic field at a point P at a distance d from the wire. Consider a section of length l of this wire such that the point P lies on a perpendicular bisector of the section B2 be the magnetic field at this point due to this second only. Find the value of d/l so that B2 differs from B1 by 1%.    


Two parallel wires separated by a distance of 10 cm carry currents of 10 A and 40 A along the same direction. Where should a third current by placed so that it experiences no magnetic force?


A conducting circular loop of radius a is connected to two long, straight wires. The straight wires carry a current i as shown in figure. Find the magnetic field B at the centre of the loop. 


Define Ampere in terms of force between two current carrying conductors.


A milli voltmeter of 25 milli volt range is to be converted into an ammeter of 25 ampere range. The value (in ohm) of necessary shunt will be ______.


Which of the following is true?

Two long straight parallel conductors carrying currents I1 and I2 are separated by a distance d. If the currents are flowing in the same direction, show how the magnetic field produced by one exerts an attractive force on the other. Obtain the expression for this force and hence define 1 ampere.


Two long parallel wires kept 2 m apart carry 3A current each, in the same direction. The force per unit length on one wire due to the other is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×