मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Figure Shows a Metallic Wire of Resistance 0.20 ω Sliding on a Horizontal, U-shaped Metallic Rail. the Separation Between the Parallel Arms is 20 Cm. - Physics

Advertisements
Advertisements

प्रश्न

Figure shows a metallic wire of resistance 0.20 Ω sliding on a horizontal, U-shaped metallic rail. The separation between the parallel arms is 20 cm. An electric current of 2.0 µA passes through the wire when it is slid at a rate of 20 cm s−1. If the horizontal component of the earth's magnetic field is 3.0 × 10−5 T, calculate the dip at the place.

बेरीज

उत्तर

Given:-

Separation between the parallel arms, l = 20 cm = 20 × 10−2 m

Velocity of the sliding wire, v = 20 cm/s = 20 × 10−2 m/s

Horizontal component of the earth's magnetic field, BH = 3 × 10−5 T

Current through the wire, i = 2 µA = 2 × 10−6 A

Resistance of the wire, R = 0.2 Ω

Let the vertical component of the earth's magnetic field be Bv and the angle of the dip be δ.

Now,

\[i = \frac{B_v lv}{R}\]

\[\Rightarrow B_v = \frac{iR}{lv}\]

`=(2xx10^-5xx2xx10^-1)/(20xx10^-2xx20xx10^-2)=(2xx2xx10^-7)/(2xx2xx10^-2)`

\[= 1 \times {10}^{- 5} T\]

We know,

\[\tan\delta = \frac{B_v}{B_H} = \frac{1 \times {10}^{- 5}}{3 \times {10}^{- 5}} = \frac{1}{3}\]

\[ \Rightarrow \delta =  \tan^{- 1} \left( \frac{1}{3} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Electromagnetic Induction - Exercises [पृष्ठ ३०९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 16 Electromagnetic Induction
Exercises | Q 40 | पृष्ठ ३०९

संबंधित प्रश्‍न

Two infinitely long straight parallel wires, '1' and '2', carrying steady currents I1 and I2 in the same direction are separated by a distance d. Obtain the expression for the magnetic field `vecB`due to the wire '1' acting on wire '2'. Hence find out, with the help of a suitable diagram, the magnitude and direction of this force per unit length on wire '2' due to wire '1'. How does the nature of this force changes if the currents are in opposite direction? Use this expression to define the S.I. unit of current.


What is the magnitude of magnetic force per unit length on a wire carrying a current of 8 A and making an angle of 30° with the direction of a uniform magnetic field of 0.15 T?


Two long and parallel straight wires A and B carrying currents of 8.0 A and 5.0 A in the same direction are separated by a distance of 4.0 cm. Estimate the force on a 10 cm section of wire A.


A charged particle goes undeflected in a region containing an electric and a magnetic field. It is possible that
(a) `vecE" || "vecB , vecv" || " vec E `
(b) `vecE  "is not parallel"  vecB`
(c) `vecv " || " vecB  but  vecv  "is not parallel"`
(d) `vecE" || " vecB  but   vecv "is not parallel"`


An electron is moving along the positive x-axis. You want to apply a magnetic field for a short time so that the electron may reverse its direction and move parallel to the negative x-axis. This can be done by applying the magnetic field along
(a) y-axis
(b) z-axis
(c) y-axis only
(d) z-axis only


A copper wire of diameter 1.6 mm carries a current of 20 A. Find the maximum magnitude of the magnetic field `vecB` due to this current.


A transmission wire carries a current of 100 A. What would be the magnetic field B at a point on the road if the wire is 8 m above the road? 


A hypothetical magnetic field existing in a region is given by `vecB = B_0 vece` where `vece`_r denotes the unit vector along the radial direction. A circular loop of radius a, carrying a current i, is placed with its plane parallel to the xy plane and the centre at (0, 0, d). Find the magnitude of the magnetic force acting on the loop.



The magnetic field existing in a region is given by  `vecB = B_0(1 + x/1)veck` . A square loop of edge l and carrying a current i, is placed with its edges parallel to the xy axes. Find the magnitude of the net magnetic force experienced by the loop.


A rectangular coil of 100 turns has length 5 cm and width 4 cm. It is placed with its plane parallel to a uniform magnetic field and a current of 2 A is sent through the coil. Find the magnitude of the magnetic field B if the torque acting on the coil is 0.2 N m−1


Figure shows two parallel wires separated by a distance of 4.0 cm and carrying equal currents of 10 A along opposite directions. Find the magnitude of the magnetic field B at the points A1, A2, A3


A long, straight wire carries a current i. Let B1 be the magnetic field at a point P at a distance d from the wire. Consider a section of length l of this wire such that the point P lies on a perpendicular bisector of the section B2 be the magnetic field at this point due to this second only. Find the value of d/l so that B2 differs from B1 by 1%.    


Three coplanar parallel wires, each carrying a current of 10 A along the same direction, are placed with a separation 5.0 cm between the consecutive ones. Find the magnitude of the magnetic force per unit length acting on the wires. 


Two parallel wires separated by a distance of 10 cm carry currents of 10 A and 40 A along the same direction. Where should a third current by placed so that it experiences no magnetic force?


Define Ampere in terms of force between two current carrying conductors.


A milli voltmeter of 25 milli volt range is to be converted into an ammeter of 25 ampere range. The value (in ohm) of necessary shunt will be ______.


Which of the following is true?

Five long wires A, B, C, D and E, each carrying current I are arranged to form edges of a pentagonal prism as shown in figure. Each carries current out of the plane of paper.

  1. What will be magnetic induction at a point on the axis O? AxisE is at a distance R from each wire.
  2. What will be the field if current in one of the wires (say A) is switched off?
  3. What if current in one of the wire (say) A is reversed?

Two long straight parallel conductors carrying currents I1 and I2 are separated by a distance d. If the currents are flowing in the same direction, show how the magnetic field produced by one exerts an attractive force on the other. Obtain the expression for this force and hence define 1 ampere.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×