हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Figure Shows a Metallic Wire of Resistance 0.20 ω Sliding on a Horizontal, U-shaped Metallic Rail. the Separation Between the Parallel Arms is 20 Cm. - Physics

Advertisements
Advertisements

प्रश्न

Figure shows a metallic wire of resistance 0.20 Ω sliding on a horizontal, U-shaped metallic rail. The separation between the parallel arms is 20 cm. An electric current of 2.0 µA passes through the wire when it is slid at a rate of 20 cm s−1. If the horizontal component of the earth's magnetic field is 3.0 × 10−5 T, calculate the dip at the place.

योग

उत्तर

Given:-

Separation between the parallel arms, l = 20 cm = 20 × 10−2 m

Velocity of the sliding wire, v = 20 cm/s = 20 × 10−2 m/s

Horizontal component of the earth's magnetic field, BH = 3 × 10−5 T

Current through the wire, i = 2 µA = 2 × 10−6 A

Resistance of the wire, R = 0.2 Ω

Let the vertical component of the earth's magnetic field be Bv and the angle of the dip be δ.

Now,

i=BvlvR

Bv=iRlv

=2×10-5×2×10-120×10-2×20×10-2=2×2×10-72×2×10-2

=1×105T

We know,

tanδ=BvBH=1×1053×105=13

δ=tan1(13)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Electromagnetic Induction - Exercises [पृष्ठ ३०९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 16 Electromagnetic Induction
Exercises | Q 40 | पृष्ठ ३०९

संबंधित प्रश्न

Two long straight parallel conductors 'a' and 'b', carrying steady currents Ia and Ib are separated by a distance d. Write the magnitude and direction of the magnetic field produced by the conductor 'a' at the points along the conductor 'b'. If the currents are flowing in the same direction, what is the nature and magnitude of the force between the two conductors?


Derive the expression for force per unit length between two long straight parallel current carrying conductors. Hence define one ampere.


Two parallel, long wires carry currents i1 and i2 with i1 > i2. When the currents are in the same direction, the magnetic field at a point midway between the wires is 10 µT. If the direction of i2 is reversed, the field becomes 30 µT. The ratio i1/i2 is 


A long, straight wire carrying a current of 1.0 A is placed horizontally in a uniform magnetic field B = 1.0 × 10−5 T pointing vertically upward figure. Find the magnitude of the resultant magnetic field at the points P and Q, both situated at a distance of 2.0 cm from the wire in the same horizontal plane. 


A hypothetical magnetic field existing in a region is given by B=B0e where e_r denotes the unit vector along the radial direction. A circular loop of radius a, carrying a current i, is placed with its plane parallel to the xy plane and the centre at (0, 0, d). Find the magnitude of the magnetic force acting on the loop.


A straight wire of length l can slide on two parallel plastic rails kept in a horizontal plane with a separation d. The coefficient of friction between the wire and the rails is µ. If the wire carries a current i, what minimum magnetic field should exist in the space in order to slide the wire on the rails?


A rectangular coil of 100 turns has length 5 cm and width 4 cm. It is placed with its plane parallel to a uniform magnetic field and a current of 2 A is sent through the coil. Find the magnitude of the magnetic field B if the torque acting on the coil is 0.2 N m−1


Figure shows two parallel wires separated by a distance of 4.0 cm and carrying equal currents of 10 A along opposite directions. Find the magnitude of the magnetic field B at the points A1, A2, A3


Two parallel wires carry equal currents of 10 A along the same direction and are separated by a distance of 2.0 cm. Find the magnetic field at a point which is 2.0 cm away from each of these wires.


Consider a 10-cm long piece of a wire which carries a current of 10 A. Find the magnitude of the magnetic field due to the piece at a point which makes an equilateral triangle with the ends of the piece.


A long, straight wire carries a current i. Let B1 be the magnetic field at a point P at a distance d from the wire. Consider a section of length l of this wire such that the point P lies on a perpendicular bisector of the section B2 be the magnetic field at this point due to this second only. Find the value of d/l so that B2 differs from B1 by 1%.    


Two parallel wires separated by a distance of 10 cm carry currents of 10 A and 40 A along the same direction. Where should a third current by placed so that it experiences no magnetic force?


According to Ampere's circuital law, ______.


Which of the following is true?

Two free parallel wires carrying currents in the opposite directions ______.

The magnetic moment of a circular coil carrying current is ______.

Three infinitely long parallel straight current-carrying wires A, B and C are kept at equal distance from each other as shown in the figure. The wire C experiences net force F. The net force on wire C, when the current in wire A is reversed will be ______.


Two long straight parallel current-carrying conductors are kept ‘a’ distant apart in the air. The direction of current in both the conductors is the same. Find the magnitude of force per unit length and the direction of the force between them. Hence define one ampere.


The figure below are two long, parallel wires carrying current in the same direction such that I1 < I2.

  1. In which direction will wire I1 move?
  2. If the direction of the current I2 is reversed, in which direction will the wire I1 move now?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.