मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

Two long and parallel straight wires A and B carrying currents of 8.0 A and 5.0 A in the same direction are separated by a distance of 4.0 cm. Estimate the force on a 10 cm section of wire A. - Physics

Advertisements
Advertisements

प्रश्न

Two long and parallel straight wires A and B carrying currents of 8.0 A and 5.0 A in the same direction are separated by a distance of 4.0 cm. Estimate the force on a 10 cm section of wire A.

संख्यात्मक

उत्तर

Current flowing in wire A, IA = 8.0 A

Current flowing in wire B, IB = 5.0 A

Distance between the two wires, r = 4.0 cm = 0.04 m

Length of a section of wire A, l = 10 cm = 0.1 m

Force exerted on length l due to the magnetic field is given as:

B = `(mu_0 2"I"_"A""I"_"B""I")/(4pi"r")`

Where,

`mu_0` = Permeability of free space = 4π × 10–7 T m A–1

B = `(4pi xx 10^-7 xx 2 xx 8 xx 5 xx 0.1)/(4pi xx 0.04)`

= 2 × 10–5 N

The magnitude of the force is 2 × 10–5 N. This is an attractive force normal to A towards B because the direction of the currents in the wires is the same.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Moving Charges and Magnetism - Exercise [पृष्ठ १६९]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
पाठ 4 Moving Charges and Magnetism
Exercise | Q 4.7 | पृष्ठ १६९
एनसीईआरटी Physics [English] Class 12
पाठ 4 Moving Charges and Magnetism
Exercise 2 | Q 7 | पृष्ठ १६९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Two infinitely long straight parallel wires, '1' and '2', carrying steady currents I1 and I2 in the same direction are separated by a distance d. Obtain the expression for the magnetic field `vecB`due to the wire '1' acting on wire '2'. Hence find out, with the help of a suitable diagram, the magnitude and direction of this force per unit length on wire '2' due to wire '1'. How does the nature of this force changes if the currents are in opposite direction? Use this expression to define the S.I. unit of current.


Two long straight parallel conductors 'a' and 'b', carrying steady currents Ia and Ib are separated by a distance d. Write the magnitude and direction of the magnetic field produced by the conductor 'a' at the points along the conductor 'b'. If the currents are flowing in the same direction, what is the nature and magnitude of the force between the two conductors?


 Two infinitely large plane thin parallel sheets having surface charge densities σ1 and σ2 (σ1 > σ2) are shown in the figure. Write the magnitudes and directions of the net fields in the regions marked II and III.


A charged particle goes undeflected in a region containing an electric and a magnetic field. It is possible that
(a) `vecE" || "vecB , vecv" || " vec E `
(b) `vecE  "is not parallel"  vecB`
(c) `vecv " || " vecB  but  vecv  "is not parallel"`
(d) `vecE" || " vecB  but   vecv "is not parallel"`


 and ```vecE` and  `vecB`denote electric and magnetic fields in a frame S and `vecE`→ and `vecB` in another frame S' moving with respect to S at a velocity `vecV` Two of the following equations are wrong. Identify them.
(a) `B_y^, =  B_y + (vE_z)/c^2`

(b) `E_y^' = E_y - (vB_z)/(c^2)`

`(c) Ey = By + vE_z`

`(d) E_y = E_y + vB_z`



The magnetic field existing in a region is given by  `vecB = B_0(1 + x/1)veck` . A square loop of edge l and carrying a current i, is placed with its edges parallel to the xy axes. Find the magnitude of the net magnetic force experienced by the loop.


A rectangular coil of 100 turns has length 5 cm and width 4 cm. It is placed with its plane parallel to a uniform magnetic field and a current of 2 A is sent through the coil. Find the magnitude of the magnetic field B if the torque acting on the coil is 0.2 N m−1


Two parallel wires carry equal currents of 10 A along the same direction and are separated by a distance of 2.0 cm. Find the magnetic field at a point which is 2.0 cm away from each of these wires.


Four long, straight wires, each carrying a current of 5.0 A, are placed in a plane as shown in figure. The points of intersection form a square of side 5.0 cm.
(a) Find the magnetic field at the centre P of the square.
(b) Q1, Q2, Q3, and Q4, are points situated on the diagonals of the square and at a distance from P that is equal to the diagonal of the square. Find the magnetic fields at these points. 


A long, straight wire carries a current i. Let B1 be the magnetic field at a point P at a distance d from the wire. Consider a section of length l of this wire such that the point P lies on a perpendicular bisector of the section B2 be the magnetic field at this point due to this second only. Find the value of d/l so that B2 differs from B1 by 1%.    


A straight, how wire carries a current of 20 A. Another wire carrying equal current is placed parallel to it. If the force acting on a length of 10 cm of the second wire is 2.0 × 10−5 N, what is the separation between them? 


Three coplanar parallel wires, each carrying a current of 10 A along the same direction, are placed with a separation 5.0 cm between the consecutive ones. Find the magnitude of the magnetic force per unit length acting on the wires. 


According to Ampere's circuital law, ______.


Which of the following is true?

The magnetic moment of a circular coil carrying current is ______.

The nature of parallel and anti-parallel currents are ______.


Do magnetic forces obey Newton’s third law. Verify for two current elements dl1 = dlî located at the origin and dl2 = dlĵ located at (0, R, 0). Both carry current I.


Beams of electrons and protons move parallel to each other in the same direction. They ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×