Advertisements
Advertisements
प्रश्न
Two solenoids have identical geometrical construction but one is made of thick wire and the other of thin wire. Which of the following quantities are different for the two solenoids?
(a) self-inductance
(b) rate of Joule heating if the same current goes through them
(c) magnetic field energy if the same current goes through them
(d) time constant if one solenoid is connected to one battery and the other is connected to another battery.
उत्तर
(b) rate of Joule heating if the same current goes through them
(d) time constant if one solenoid is connected to one battery and the other is connected to another battery
Because the solenoids are identical, their self-inductance will be the same.
Resistance of a wire is given by
`R=pl/A`
Here,
l = Length of the wire
A = Area of cross section of the wire
ρ = Resistivity of the wire
Because ρ and l are the same for both wires, the thick wire will have greater area of cross section and hence less resistance than the thin wire.
`rArr R_"thick" < R_"thin"`
The time constant for a solenoid is given by
`tau=L/R`
`thereforetau_"thick">tau_"thin"`
Thus, time constants of the solenoids would be different if one solenoid is connected to one battery and the other is connected to another battery.
Also, because the self-inductance of the solenoids is the same and the same current flows through them, the magnetic field energy given by `1/2Li^2` will be the same.
Power dissipated as heat is given by
`P=i^2R`
i is the same for both solenoids.
`thereforeP_"thick" < P_"thin"`
Because the resistance of the coils are different, the rate of Joule heating will be different for the coils if the same current goes through them.
APPEARS IN
संबंधित प्रश्न
In a given coil of self-inductance of 5 mH, current changes from 4 A to 1 A in 30 ms. Calculate the emf induced in the coil.
A toroidal solenoid with air core has an average radius of 15 cm, area of cross-section 12 cm2 and has 1200 turns. Calculate the self-inductance of the toroid. Assume the field to be uniform across the cross-section of the toroid.
The currents flowing in the two coils of self-inductance L1 = 16 mH and L2 = 12 mH are increasing at the same rate. If the power supplied to the two coil is equal, find the ratio of the energies stored in the two coils at a given instant ?
A magnetic flux of 8 × 10−4 weber is linked with each turn of a 200-turn coil when there is an electric current of 4 A in it. Calculate the self-inductance of the coil.
Answer the following question.
When an inductor is connected to a 200 V dc voltage, a current at 1A flows through it. When the same inductor is connected to a 200 V, 50 Hz ac source, only 0.5 A current flows. Explain, why? Also, calculate the self-inductance of the inductor.
Two pure inductors each of self-inductance L are connected in series, the net inductance is ______
When a coil is connected to a D.C. source of e.m.f. 12 volt, then a current of 4 ampere flows in it. If the same coil is connected to a 12 volt, 25 cycle/s A.C sources, then the current flowing in it is 2.4 A. The self-inductance of the coil will be ______
The magnetic potential energy stored in a certain inductor is 15 mJ, when the current in the inductor is 40 mA. This inductor is of inductance ____________.
Consider a solenoid carrying supplied by a source with a constant emf containing iron core inside it. When the core is pulled out of the solenoid, the change in current will ______.
An e.m.f. of 10 volt is produced by a self inductance when the current changes at a steady rate from 6 A to 4 A in 1 millisecond. The value of self inductance is ____________.
A toroidal solenoid with air core has an average radius 'R', number of turns 'N' and area of cross-section 'A'. The self-inductance of the solenoid is (Neglect the field variation cross-section of the toroid)
Magnetic flux of 12 microweber is linked with a coil. When current of 3 mA flows through it, the self inductance of the coil is ____________.
A graph of magnetic flux `phi` versus current (I) is shown for four inductors A, B, C, D. Smaller value of self inductance is for inductor ____________.
The coefficient of self inductance of a solenoid is 0.18 mH. If a core of soft iron of relative permeability 900 is inserted, then the coefficient of self inductance will become nearly ______.
When current i passes through an inductor of self-inductance L, energy stored in it is 1/2. L i2. This is stored in the ______.
If both the number of turns and core length of an inductor is doubled keeping other factors constant, then its self-inductance will be ______.
The self inductance L of a solenoid of length l and area of cross-section A, with a fixed number of turns N increases as ______.
The current in a coil changes from 50A to 10A in 0.1 second. The self inductance of the coil is 20H. The induced e.m.f. in the coil is ______.